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Announcements

● A Note on the Midterm

2



Announcements

● Lecture Feedback
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Learning Goal for Today

Learn how to define our own variable types!
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Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap
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Review: Data Structures
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// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an 
array of hedgehogs”.

8



// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an 
array of hedgehogs”.
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Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap
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Some Large Programs are in Java
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Some Large Programs are in Java
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How?



Defining New Variable Types
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Email 
Sender

Login 
Manager

Email User Inbox



You’ve Been Using Variable Types
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You’ve Been Using Variable Types
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How can we make our 
own variable types?

GOval RandomGenerator ArrayList

rgen? 22



A class defines a 
new variable type.
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Why Is This Useful?
● A student registration system needs to store info about students, 

but Java has no Student variable type.

● A music synthesizer app might want to store information about 
different types of instruments, but Java has no Instrument 
variable type.

● An email program might have many emails that need to be 
stored, but Java has no Email type.
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Why Is This Useful?
● However, Java does provide a feature for us to add new data 

types to the language: classes.
○ Writing a class defines a new variable type

● This lets you decompose your program across multiple files.
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Why Is This Useful?

// We already have these variable types

GRect square = new GRect(100, 100);

String msg = “It’s almost August?!”;

ArrayList<String> list = new ArrayList<String>();

// Using classes, we can now make these variable types!

Student s = new Student();

Email email = new Email();

Hedgehog walnoot = new Hedgehog(“Walnoot”);
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Classes and Objects
● Every object is an instance of a class.
● Each new variable is a new instance.

● The class determines:
○ What state each instance has.
○ What behaviors each instance has.

● Each instance determines:
○ The specific values for that state information.
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Classes and Objects
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rect1 rect2

One instance of the 
GRect class

Another instance of 
the GRect class



Classes Are Like Blueprints

Blueprint for Hedgehog

class: A template for a new type of variable.



Classes Are Like Blueprints
Hedgehog Class (blueprint)

State:    Has name
    Has color
    Has cuteness level

Behavior:   Can eat
                   Can run*

         Can curl up

Blueprint for 
Hedgehog



Hedgehog #1 (variable)

State:  name = “Walnoot”
  color = Brown
  cuteness = 10 (Very cute)

Behavior:   Can eat
                   Can run

         Can curl up

Classes Are Like Blueprints
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Hedgehog Class (blueprint)

State:    Has name
    Has color
    Has cuteness level

Behavior:   Can eat
                   Can run*

         Can curl up

Hedgehog #2 (variable)

State:  name = “Nutmeg”
  color = Snowflake
  cuteness = 15 (VERY cute)

Behavior:   Can eat
                   Can run

         Can curl up

Hedgehog #3 (variable)

State:  name = “Ruffles”
  color = Beige
  cuteness = 50 (speechless)

Behavior:   Can eat
                   Can run

         Can curl up

Blueprint for 
Hedgehog



Classes Are Like Blueprints

To design a new variable type, you must specify 3 things:

1. What subvariables make up this new variable type? (think: state)
2. How do you create a new variable of this type?
3. What methods can you call on a variable of this type? (think: behaviors)
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What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50); 

dukeAccount.deposit(50); 

println(“Duke now has: $” + dukeAccount.getBalance()); 

BankAccount karelAccount = new BankAccount(“Karel”); 

karelAccount.deposit(50); 

boolean success = karelAccount.withdraw(10); 

if (success) { 

println(“Karel withdrew $10.”); 

} 

println(karelAccount);
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Can I 
deposit 

beepers?

Hmm, do they 
count as 
Bitcoin?



What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50); 

dukeAccount.deposit(50); 

println(“Duke now has: $” + dukeAccount.getBalance()); 

BankAccount karelAccount = new BankAccount(“Karel”); 

karelAccount.deposit(50); 

boolean success = karelAccount.withdraw(10); 

if (success) { 

println(“Karel withdrew $10.”); 

} 

println(karelAccount);
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deposit 
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Creating a New Class

Let’s define a new variable type called BankAccount that 
represents information about a single person’s bank account.
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Creating a New Class

Let’s define a new variable type called BankAccount that 
represents information about a single person’s bank account.

A BankAccount:
● Contains the name of account holder
● Contains the balance
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State



Creating a New Class

Let’s define a new variable type called BankAccount that 
represents information about a single person’s bank account.

A BankAccount:
● Contains the name of account holder
● Contains the balance
● Can deposit money
● Can withdraw money
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State

Behavior



Creating a New Class

public class <Classname> {

// some awesome code

}
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Creating a New Class

public class <Classname> {

// some awesome code

}
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We’re defining a thing 
called Classname



Creating a New Class

public class <Classname> extends <Superclass> {

// some awesome code

}
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Creating a New Class

public class <Classname> extends <Superclass> {

// some awesome code

}
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We’re defining a thing 
called Classname

Classname is a kind of 
Superclass



Creating a New Class

public class BankAccount {

// some awesome code

}
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If you don’t extend 
anything, you’re implicitly 

extending Object



Creating a New Class

public class BankAccount {

// some awesome code

}
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BankAccount.java

These should match



Creating a New Class

public class BankAccount {

// some awesome code

}
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BankAccount.java



Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables
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Example: BankAccount

public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

}
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BankAccount.java

Each BankAccount 
object has its own 
copy of all instance 

variables



Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables

2. How do you create a new variable of this type?
○ Constructor
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Constructors

GRect rect = new GRect();

GRect square = new GRect(50, 50);
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This is calling a special method! 
The GRect constructor.



Constructors

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

42

The constructor is executed when a 
new object is created.



Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {

this.name = accountName;

this.balance = startBalance;

}

public BankAccount(String accountName) {

this.name = accountName;

this.balance = 0;

}

} 43



Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {

this.name = accountName;

this.balance = startBalance;

}

public BankAccount(String accountName) {

this.name = accountName;

this.balance = 0;

}

} 44



Constructors
● Initializes the state of new objects as they are created

public Classname(parameters) {

statements;

}

● The constructor runs when client calls  new Classname(...)
● No return type specified: returns the new object being created
● If a class has no constructor, Java gives it a default constructor 

with no parameters; sets all fields to default values like 0 or null
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Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);
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name = “Duke”
balance = 50

BankAccount(name, bal) { 
this.name = name; 
this.balance = bal; 

}

dukeAccount



Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);
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name = “Duke”
balance = 50

BankAccount(name, bal) { 
this.name = name; 
this.balance = bal; 

}

name = “Karel”
balance = 0

BankAccount(name) { 
this.name = name; 
this.balance = 0; 

}

dukeAccount karelAccount



Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

When you call a constructor (with new):
1. Java creates a new “instance” of that class
2. The constructor initializes the object’s state (instance variables)
3. The newly created object is returned to your program 48

name = “Duke”
balance = 50

BankAccount(name, bal) { 
this.name = name; 
this.balance = bal; 

}

name = “Karel”
balance = 0

BankAccount(name) { 
this.name = name; 
this.balance = 0; 

}

dukeAccount karelAccount



Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables

2. How do you create a new variable of this type?
○ Constructor

3. What can this new variable type do? (behaviors)
○ These are its public methods
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What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50); 

dukeAccount.deposit(50); 

println(“Duke now has: $” + dukeAccount.getBalance()); 

BankAccount karelAccount = new BankAccount(“Karel”); 

karelAccount.deposit(50); 

boolean success = karelAccount.withdraw(10); 

if (success) { 

println(“Karel withdrew $10.”); 

} 

println(karelAccount);
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I really hope 
my beepers 

count as $$...



Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

// Step 2: how to create a new BankAccount (ommitted)

// Step 3: the things a BankAccount can do 

public void deposit(double amount) { 

this.balance += amount; 

} 

public boolean withdraw(double amount) { 

if (this.balance >= amount) { 

this.balance -= amount; 

return true; 

} 

return false; 

}

}
51



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.
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name = “Duke”
balance = 50

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);
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name = “Duke”
balance = 50

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);
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name = “Duke”
balance = 50

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);
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name = “Duke”
balance = 72

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);
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name = “Duke”
balance = 72

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);

57

name = “Duke”
balance = 72

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 0

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);
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name = “Duke”
balance = 72

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 1.99

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Defining Methods in Classes
Methods defined in classes are 
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);
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name = “Duke”
balance = 72

deposit(amount) { 
this.balance += amount; 

}

name = “Karel”
balance = 1.99

deposit(amount) { 
this.balance += amount; 

}

dukeAccount

karelAccount



Wall of Abstraction
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run
Bank 

account 
data

withdraw()

deposit()

Wall of Abstraction



Adding Privacy

private double balance;

● encapsulation: Hiding implementation details of an object 
from its clients.
○ Encapsulation provides abstraction. Separates external view 

(behavior) from internal view (state).
○ Encapsulation protects the integrity of an object’s data.

● A class’s instance variables should always be private.
○ No code outside the class can directly access/change it.
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Adding Privacy
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Only accessible inside 
BankAccount.java

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.balance);   // doesn’t work



Getters & Setters
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// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.getBalance());   // but this does!



Getters & Setters

● To allow the client to reference private instance variables, we 
define public methods in the class that
○ set an instance variable’s value (“getters”), and 
○ get (return) an instance variable’s value (“setters”)

● Getters and setters prevent instance variables from being 
tampered with.
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Example: BankAccount
public class BankAccount {

private String name; 

private double balance;

…
// “setter”

public void setName(String newName) { 

if (newName.length() > 0) { 

this.name = newName; 

} 

}

}
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Example: BankAccount
public class BankAccount {

private String name; 

private double balance;

…
// “setter”

public void setName(String newName) { 

if (newName.length() > 0) { 

this.name = newName; 

} 

}

// “getters”

public String getName() { 

return this.name;

}

public double getBalance() { 

return this.balance;

}

} 66



Getters & Setters

67

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.setName(“Duke J.”);

String name = dukeAccount.getName();

double balance = dukeAccount.getBalance();

println(name + “ has $” + balance);   // “Duke J. has $50”



One Special Method...

How can we do this?

68

BankAccount ba = new BankAccount(...);
println(ba);  // ba isn’t a String!



One Special Method...

How can we do this?

We define a toString() method
(inside the class file)

69

BankAccount ba = new BankAccount(...);
println(ba);  // ba isn’t a String!

public String toString() {
return this.name  

           + “ has $” + this.balance;
}



One Special Method...

How can we do this?

We define a toString() method
(inside the class file)

And now this works!
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BankAccount ba = new BankAccount(...);
println(ba);  // ba isn’t a String!

BankAccount ba = new BankAccount(...);
println(ba);  // prints “Duke has $50”

public String toString() {
return this.name  

           + “ has $” + this.balance;
}



BankAccount #1 (variable)

State:  name = “Duke”
  balance = 50

Behavior:   Can deposit
                   Can withdraw

Classes Are Like Blueprints
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BankAccount Class (blueprint)

State:    Has name
    Has balance

Behavior:   Can deposit
                   Can withdraw
                   

Blueprint for 
BankAccount

BankAccount #1 (variable)

State:  name = “Karel”
  balance = 1.99

Behavior:   Can deposit
                   Can withdraw



Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

72

 * all class methods and constructors have access to a this reference



Example: BankAccount
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Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap
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Hedgehog Show

True story: in a town in Washington, there is an annual 
Hedgehog Show! (ask Sarai)

75



Hedgehog Show
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Hedgehog Show

● Let’s help keep track of hedgehogs at the Hedgehog Show!
● To do that, we’ll need a new variable type, Hedgehog. 
● How would you design a Hedgehog variable type?
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Hedgehog Show

● Let’s help keep track of hedgehogs at the Hedgehog Show!
● To do that, we’ll need a new variable type, Hedgehog. 
● How would you design a Hedgehog variable type?

● What state/properties (instance variables) and behaviors (methods) 
should it have?
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Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap
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A class …
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A class defines a 
new variable type.
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Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)
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 * all class methods and constructors have access to a this reference



Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

Next time: Classes Practice
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