
Classes

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 21

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor, & others.

Announcements

● A Note on the Midterm

2

Announcements

● Lecture Feedback

3

Learning Goal for Today

Learn how to define our own variable types!

4

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

5

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

6

Review: Data Structures

7

ArrayListsArrays

2D Arrays HashMaps

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an
array of hedgehogs”.

8

// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an
array of hedgehogs”.

9

1

0 1

2 3

2

3

3

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

10

Some Large Programs are in Java

11

Some Large Programs are in Java

12

How?

Defining New Variable Types

13

Inbox
Database

Email
Sender

Login
Manager

Email User Inbox

You’ve Been Using Variable Types

14

GOval RandomGenerator ArrayList

rgen? 22

You’ve Been Using Variable Types

15

How can we make our
own variable types?

GOval RandomGenerator ArrayList

rgen? 22

A class defines a
new variable type.

16

Why Is This Useful?
● A student registration system needs to store info about students,

but Java has no Student variable type.

● A music synthesizer app might want to store information about
different types of instruments, but Java has no Instrument
variable type.

● An email program might have many emails that need to be
stored, but Java has no Email type.

17

Why Is This Useful?
● However, Java does provide a feature for us to add new data

types to the language: classes.
○ Writing a class defines a new variable type

● This lets you decompose your program across multiple files.

18

Why Is This Useful?

// We already have these variable types

GRect square = new GRect(100, 100);

String msg = “It’s almost August?!”;

ArrayList<String> list = new ArrayList<String>();

// Using classes, we can now make these variable types!

Student s = new Student();

Email email = new Email();

Hedgehog walnoot = new Hedgehog(“Walnoot”);

19

Classes and Objects
● Every object is an instance of a class.
● Each new variable is a new instance.

● The class determines:
○ What state each instance has.
○ What behaviors each instance has.

● Each instance determines:
○ The specific values for that state information.

20

Classes and Objects

21

rect1 rect2

One instance of the
GRect class

Another instance of
the GRect class

Classes Are Like Blueprints

Blueprint for Hedgehog

class: A template for a new type of variable.

Classes Are Like Blueprints
Hedgehog Class (blueprint)

State: Has name
 Has color
 Has cuteness level

Behavior: Can eat
 Can run*

 Can curl up

Blueprint for
Hedgehog

Hedgehog #1 (variable)

State: name = “Walnoot”
 color = Brown
 cuteness = 10 (Very cute)

Behavior: Can eat
 Can run

 Can curl up

Classes Are Like Blueprints

24

Hedgehog Class (blueprint)

State: Has name
 Has color
 Has cuteness level

Behavior: Can eat
 Can run*

 Can curl up

Hedgehog #2 (variable)

State: name = “Nutmeg”
 color = Snowflake
 cuteness = 15 (VERY cute)

Behavior: Can eat
 Can run

 Can curl up

Hedgehog #3 (variable)

State: name = “Ruffles”
 color = Beige
 cuteness = 50 (speechless)

Behavior: Can eat
 Can run

 Can curl up

Blueprint for
Hedgehog

Classes Are Like Blueprints

To design a new variable type, you must specify 3 things:

1. What subvariables make up this new variable type? (think: state)
2. How do you create a new variable of this type?
3. What methods can you call on a variable of this type? (think: behaviors)

25

What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(50);

println(“Duke now has: $” + dukeAccount.getBalance());

BankAccount karelAccount = new BankAccount(“Karel”);

karelAccount.deposit(50);

boolean success = karelAccount.withdraw(10);

if (success) {

println(“Karel withdrew $10.”);

}

println(karelAccount);

26

Can I
deposit

beepers?

Hmm, do they
count as
Bitcoin?

What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(50);

println(“Duke now has: $” + dukeAccount.getBalance());

BankAccount karelAccount = new BankAccount(“Karel”);

karelAccount.deposit(50);

boolean success = karelAccount.withdraw(10);

if (success) {

println(“Karel withdrew $10.”);

}

println(karelAccount);

27

Can I
deposit

beepers?

Hmm, do they
count as
Bitcoin?

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

28

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

A BankAccount:
● Contains the name of account holder
● Contains the balance

29

State

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

A BankAccount:
● Contains the name of account holder
● Contains the balance
● Can deposit money
● Can withdraw money

30

State

Behavior

Creating a New Class

public class <Classname> {

// some awesome code

}

31

Creating a New Class

public class <Classname> {

// some awesome code

}

32

We’re defining a thing
called Classname

Creating a New Class

public class <Classname> extends <Superclass> {

// some awesome code

}

33

Creating a New Class

public class <Classname> extends <Superclass> {

// some awesome code

}

34

We’re defining a thing
called Classname

Classname is a kind of
Superclass

Creating a New Class

public class BankAccount {

// some awesome code

}

35

If you don’t extend
anything, you’re implicitly

extending Object

Creating a New Class

public class BankAccount {

// some awesome code

}

36

BankAccount.java

These should match

Creating a New Class

public class BankAccount {

// some awesome code

}

37

BankAccount.java

Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables

38

Example: BankAccount

public class BankAccount {

// Step 1: the data inside a BankAccount

private String name;

private double balance;

}

39

BankAccount.java

Each BankAccount
object has its own
copy of all instance

variables

Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables

2. How do you create a new variable of this type?
○ Constructor

40

Constructors

GRect rect = new GRect();

GRect square = new GRect(50, 50);

41

This is calling a special method!
The GRect constructor.

Constructors

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

42

The constructor is executed when a
new object is created.

Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount

private String name;

private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {

this.name = accountName;

this.balance = startBalance;

}

public BankAccount(String accountName) {

this.name = accountName;

this.balance = 0;

}

} 43

Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount

private String name;

private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {

this.name = accountName;

this.balance = startBalance;

}

public BankAccount(String accountName) {

this.name = accountName;

this.balance = 0;

}

} 44

Constructors
● Initializes the state of new objects as they are created

public Classname(parameters) {

statements;

}

● The constructor runs when client calls new Classname(...)
● No return type specified: returns the new object being created
● If a class has no constructor, Java gives it a default constructor

with no parameters; sets all fields to default values like 0 or null

45

Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

46

name = “Duke”
balance = 50

BankAccount(name, bal) {
this.name = name;
this.balance = bal;

}

dukeAccount

Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

47

name = “Duke”
balance = 50

BankAccount(name, bal) {
this.name = name;
this.balance = bal;

}

name = “Karel”
balance = 0

BankAccount(name) {
this.name = name;
this.balance = 0;

}

dukeAccount karelAccount

Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

When you call a constructor (with new):
1. Java creates a new “instance” of that class
2. The constructor initializes the object’s state (instance variables)
3. The newly created object is returned to your program 48

name = “Duke”
balance = 50

BankAccount(name, bal) {
this.name = name;
this.balance = bal;

}

name = “Karel”
balance = 0

BankAccount(name) {
this.name = name;
this.balance = 0;

}

dukeAccount karelAccount

Creating a New Class

1. What information is inside this variable type? (state)
○ These are its private instance variables

2. How do you create a new variable of this type?
○ Constructor

3. What can this new variable type do? (behaviors)
○ These are its public methods

49

What If...
What if we could write a program like this?

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(50);

println(“Duke now has: $” + dukeAccount.getBalance());

BankAccount karelAccount = new BankAccount(“Karel”);

karelAccount.deposit(50);

boolean success = karelAccount.withdraw(10);

if (success) {

println(“Karel withdrew $10.”);

}

println(karelAccount);

50

I really hope
my beepers

count as $$...

Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount

private String name;

private double balance;

// Step 2: how to create a new BankAccount (ommitted)

// Step 3: the things a BankAccount can do

public void deposit(double amount) {

this.balance += amount;

}

public boolean withdraw(double amount) {

if (this.balance >= amount) {

this.balance -= amount;

return true;

}

return false;

}

}
51

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

52

name = “Duke”
balance = 50

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

53

name = “Duke”
balance = 50

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

54

name = “Duke”
balance = 50

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

55

name = “Duke”
balance = 72

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);

56

name = “Duke”
balance = 72

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);

57

name = “Duke”
balance = 72

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 0

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);

58

name = “Duke”
balance = 72

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 1.99

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Defining Methods in Classes
Methods defined in classes are
called on an instance of that class.

dukeAccount.deposit(22);

karelAccount.deposit(1.99);

59

name = “Duke”
balance = 72

deposit(amount) {
this.balance += amount;

}

name = “Karel”
balance = 1.99

deposit(amount) {
this.balance += amount;

}

dukeAccount

karelAccount

Wall of Abstraction

60

run
Bank

account
data

withdraw()

deposit()

Wall of Abstraction

Adding Privacy

private double balance;

● encapsulation: Hiding implementation details of an object
from its clients.
○ Encapsulation provides abstraction. Separates external view

(behavior) from internal view (state).
○ Encapsulation protects the integrity of an object’s data.

● A class’s instance variables should always be private.
○ No code outside the class can directly access/change it.

61

Adding Privacy

62

Only accessible inside
BankAccount.java

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.balance); // doesn’t work

Getters & Setters

63

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.getBalance()); // but this does!

Getters & Setters

● To allow the client to reference private instance variables, we
define public methods in the class that
○ set an instance variable’s value (“getters”), and
○ get (return) an instance variable’s value (“setters”)

● Getters and setters prevent instance variables from being
tampered with.

64

Example: BankAccount
public class BankAccount {

private String name;

private double balance;

…
// “setter”

public void setName(String newName) {

if (newName.length() > 0) {

this.name = newName;

}

}

}

65

Example: BankAccount
public class BankAccount {

private String name;

private double balance;

…
// “setter”

public void setName(String newName) {

if (newName.length() > 0) {

this.name = newName;

}

}

// “getters”

public String getName() {

return this.name;

}

public double getBalance() {

return this.balance;

}

} 66

Getters & Setters

67

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(“Duke”, 50);

dukeAccount.setName(“Duke J.”);

String name = dukeAccount.getName();

double balance = dukeAccount.getBalance();

println(name + “ has $” + balance); // “Duke J. has $50”

One Special Method...

How can we do this?

68

BankAccount ba = new BankAccount(...);
println(ba); // ba isn’t a String!

One Special Method...

How can we do this?

We define a toString() method
(inside the class file)

69

BankAccount ba = new BankAccount(...);
println(ba); // ba isn’t a String!

public String toString() {
return this.name

 + “ has $” + this.balance;
}

One Special Method...

How can we do this?

We define a toString() method
(inside the class file)

And now this works!

70

BankAccount ba = new BankAccount(...);
println(ba); // ba isn’t a String!

BankAccount ba = new BankAccount(...);
println(ba); // prints “Duke has $50”

public String toString() {
return this.name

 + “ has $” + this.balance;
}

BankAccount #1 (variable)

State: name = “Duke”
 balance = 50

Behavior: Can deposit
 Can withdraw

Classes Are Like Blueprints

71

BankAccount Class (blueprint)

State: Has name
 Has balance

Behavior: Can deposit
 Can withdraw

Blueprint for
BankAccount

BankAccount #1 (variable)

State: name = “Karel”
 balance = 1.99

Behavior: Can deposit
 Can withdraw

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

72

 * all class methods and constructors have access to a this reference

Example: BankAccount

73

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

74

Hedgehog Show

True story: in a town in Washington, there is an annual
Hedgehog Show! (ask Sarai)

75

Hedgehog Show

76

Hedgehog Show

● Let’s help keep track of hedgehogs at the Hedgehog Show!
● To do that, we’ll need a new variable type, Hedgehog.
● How would you design a Hedgehog variable type?

77

Hedgehog Show

● Let’s help keep track of hedgehogs at the Hedgehog Show!
● To do that, we’ll need a new variable type, Hedgehog.
● How would you design a Hedgehog variable type?

● What state/properties (instance variables) and behaviors (methods)
should it have?

78

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

79

A class …

80

A class defines a
new variable type.

81

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

82

 * all class methods and constructors have access to a this reference

Plan for Today

● Revew: Data Structures
● Classes
● Practice: Hedgehog Show
● Recap

Next time: Classes Practice

83

