Classes

Lecture 21

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor, & others.

XX

Announcements

e A Notfe on the Midterm

Announcements

e |ecture Feedback

CS 106A Lectures ~

Week 1

1-Welcome to'SS 106A

Lecture Assignments

5 Give Feedback

Learning Goal for Today

Learn how to define our own variable types!

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

Review: Data Structures

Arrays ArrayLists
213/4|5|6 s

HashMaps
a)

ﬂ'dog)) (‘WOOF’,

key value

“Cat” (fmeOWJJ

// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an
array of hedgehogs”.

te
R4 S

// An Aside

Fun fact: the collective noun for a group of hedgehogs is “an
array of hedgehogs”.

te
R4 S

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

Some Large Programs are in Java

Some Large Programs are in Java

Defining New Variable Types

™M

&

INnbox
Database

N

v

Email
Sender

N

&

Login
Manager

v

You've Been Using Variable Types

GOval RandomGenerator ArraylList

You've Been Using Variable Types

GOval RandomGenerator ArraylList

> 22

How can we make our
own variable types?

/

. A class defines ©
2% new variable type.

Why Is This Usefule

e A studentregistration system needs to store info about students,
but Java has no Student variable type.

e A music synthesizer app might want to store information about
different types of instruments, but Java has no Instrument
variable type.

e An email program might have many emails that need to be
stored, but Java has no Email type.

Why Is This Usefule

e However, Java does provide a feature for us to add new data

types to the language: classes.
o Writing a class defines a new variable type

e This lets you decompose your program across mulfiple files.

Why Is This Usefule

// We already have these variable types

GRect square = new GRect(100, 100);

String msg = “It’s almost August?!”;
ArraylList<String> list = new ArraylList<String>();

// Using classes, we can now make these variable types!
Student s = new Student();

Email email = new Email();

Hedgehog walnoot = new Hedgehog(“Walnoot”);

Classes and Objects

e Every objectis aninstance of a class.
e Each new variable is a new instance.

e The class determines:

o What state each instance has.
o What behaviors each instance has.

e FEach instance determines:
o The specific values for that state information.

20

Classes and Objects

One instance of the Another instance of
GRect class the GRect class

21

Classes Are Like Blueprints

class: A template for a new type of variable.

Classes Are Like Blueprints

Hedgehog Class (blueprint

Blueprin’rfor

State: Has name Hedgehog
Has color S

Has cuteness level

Behavior: Can eat
Can run*
Can curl up

Classes Are Like Blueprints

~

Hedgehog Class (blueprint

State: Has name
Has color
Has cuteness level
Behavior: Can eat
Can run*

Blueprin’rfor
Hedgehog

l Can curl up

~N

Hedgehog #1 (variable)

State: name = “Walnoot”
color = Brown
cuteness = 10 (Very cute)

Behavior: Can eat

Hedgehog #2 (variable)

State: name = “Nutmeg”
color = Snowflake
cuteness = 15 (VERY cute)

Hedgehog #3 (variable)

State: name = “Ruffles”
color = Beige
cuteness = 50 (speechless)

'
Behavior: Can eat Lamec., Behavior: Can eat o
Can run Can run] - Can run e
Can curlup Cancurlup %, i3~ Can curl up 9

Classes Are Like Blueprints

To design a new variable type, you must specify 3 things:

1. What subvariables make up this new variable type?¢ (think: state)
2. How do you create a new variable of this type?
3. What methods can you call on a variable of this type? (think: behaviors)

25

What If...

What if we could write a program like thise

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
dukeAccount.deposit(50);
println(“Duke now has: $” + dukeAccount.getBalance());

BankAccount karelAccount = new BankAccount(“Karel”);

) Canl Hmm, do th
karelAccount.deposit(50); deposit nggunfcsey
boolean success = karelAccount.withdraw(10); beeperse Bitcoin?
if (success) { \ /

println(“Karel withdrew $10.%);
}

println(karelAccount);

26

What If...

What if we could write a program like thise

BankAccount new BankAccount()
BankAccount = new BankAccount()
Canl Hmm, do they
deposit count as
beeperse Bitcoin?

\ /

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

28

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

A BankAccount:

e Contains the name of account holder

State Contains the balance

29

Creating a New Class

Let’s define a new variable type called BankAccount that
represents information about a single person’s bank account.

A BankAccount:
e Contains the name of account holder
e Contains the balance
e Can deposit money
e Can withdraw money

State

Behavior

30

Creating a New Class

public class <Classname> {

// some awesome code

31

Creating a New Class

We're defining a thing
called Classname

A
[|

public class <Classname> {

// some awesome code

32

Creating a New Class

public class <Classname> extends <Superclass> {

// some awesome code

33

Creating a New Class

We're defining a thing Classname is a kind of

called Classname Superclass

A A
[11 1

public class <Classname> extends <Superclass> {

// some awesome code

34

Creating a New Class

If you don't extend

anything, you're implicitly
/ extending Object
public class BankAccount {

// some awesome code

35

Creating a New Class

BankAccount. java

These should match

public class BankAccount {

// some awesome code

36

Creating a New Class

BankAccount. java

public class BankAccount {

// some awesome code

37

Creating a New Class

1. What information is inside this variable type? (state)
o These are its private instance variables

38

Example: BankAccount

BankAccount. java

public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

} Each BankAccount
object has its own
copy of all instance
variables

|

Creating a New Class

1. What information is inside this variable type? (state)
o These are its private instance variables

2. How do you create a new variable of this type?
o Constructor

40

Constructors

GRect rect = new |GRect()[; 200L

GRect square = new |[GRect(50, 50)j @

This is calling a special method!
The GRect constructor.

41

Constructors

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

The constructor is executed when @
new object is created.

42

Example: BankAccount

public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {
this.name = accountName;
this.balance = startBalance;

Example: BankAccount

public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String accountName, double startBalance) {
this.name = accountName;
this.balance = startBalance;

public BankAccount(String accountName) {
this.name = accountName;
this.balance = 0;

Constructors

Initializes the state of new objects as they are created

public Classname(parameters) {
statements;

¥

The constructor runs when client calls new Classname(...)

No return type specified: returns the new object being created
If a class has no constructor, Java gives it a default constructor
with no parameters; sets all fields to default values like 0 or null

45

Using Constructors

BankAccount dukeAccount

dukeAccount

new BankAccount(“Duke”, 50);

name = “Duke”
balance = 50

BankAccount(name, bal) {
this.name = name;
this.balance = bal;

46

Using Constructors

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
BankAccount karelAccount = new BankAccount(“Karel”);

dukeAccount karelAccount
name = “Duke” name = “Karel”
balance = 50 balance = ©
BankAccount(name, bal) { BankAccount(name) {
this.name = name; this.name = name;
this.balance = bal; this.balance = 0;
} }

47

Using Constructors

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
BankAccount karelAccount = new BankAccount(“Karel”);

dukeAccount karelAccount
name = “Duke” name = “Karel”
balance = 50 balance = ©
BankAccount(name, bal) { BankAccount(name) {
this.name = name; this.name = name;
this.balance = bal; this.balance = 0;
} }

When you call a constructor (with new):
1. Java creates a new “instance” of that class

2. The constructor initializes the object’s state (instance variables)

3. The newly created object is returned to your program

Creating a New Class

1. What information is inside this variable type? (state)
o These are its private instance variables

O

3. What can this new variable type do? (behaviors)
o These are its public methods

49

What If...

dukeAccount.deposit(50);
dukeAccount.getBalance()

| really hope
karelAccount.deposit(50); my beepers
karelAccount.withdraw(10); count as $3...

\

50

Example: BankAccount

public class BankAccount {
// Step 1l: the data inside a BankAccount
private String name;
private double balance;

// Step 2: how to create a new BankAccount (ommitted)

// Step 3: the things a BankAccount can do

public void deposit(double amount) {
this.balance += amount;

}

public boolean withdraw(double amount) {
if (this.balance >= amount) {

this.balance -= amount;
return true;
}
return false;
} 51

N

Defining Methods in Classes

dukeAccount

Methods defined in classes are
. name = “Duke”
called on an instance of that class. balance = 50

deposit(amount) {
this.balance += amount;

}

karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

52

Defining Methods in Classes

dukeAccount

Methods defined in classes are

name = “Duke”

called on an instance of that class. balance = 50
deposit(amount) {
dukeAccount.deposit(22); } this.balance += amount;
karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

53

Defining Methods in Classes

dukeAccount

Methods defined in classes are
. name = “Duke”
called on an instance of that class. balance = 50

deposit(amount) {
dukeAccount.deposit(22); } this.balance += amount;

karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

54

Defining Methods in Classes

dukeAccount

Methods defined in classes are
. name = “Duke”
called on an instance of that class. balance = 72

deposit(amount) {
dukeAccount.deposit(22); } this.balance += amount;

karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

55

Defining Methods in Classes

. . dukeAccount
Methods defined in classes are

. name = “Duke”
called on an instance of that class. balance = 72

deposit(amount) {
this.balance += amount;

dukeAccount.deposit(22);
karelAccount.deposit(1.99);

}

karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

56

Defining Methods in Classes

dukeAccount

Methods defined in classes are
. name = “Duke”
called on an instance of that class. balance = 72

deposit(amount) {
this.balance += amount;

}

karelAccount.deposit(1.99);

karelAccount

name = “Karel”
balance = ©

deposit(amount) {
this.balance += amount;

}

57

Defining Methods in Classes

dukeAccount

Methods defined in classes are
. name = “Duke”
called on an instance of that class. balance = 72

deposit(amount) {
this.balance += amount;

}

karelAccount.deposit(1.99);

karelAccount

name = “Karel”
balance = 1.99

deposit(amount) {
this.balance += amount;

}

58

Defining Methods in Classes

. . dukeAccount
Methods defined in classes are

. name = “Duke”
called on an instance of that class. balance = 72

deposit(amount) {
this.balance += amount;

dukeAccount.deposit(22);
karelAccount.deposit(1.99);

}

karelAccount

name = “Karel”
balance = 1.99

deposit(amount) {
this.balance += amount;

}

59

Wall of Abstraction

withdraw()
—
Bank
account
deposit() data
—

Wall of Abstraction
60

Adding Privacy

private|double balance;

e encapsulation: Hiding implementation details of an object

from its clients.
o Encapsulation provides abstraction. Separates external view
(behavior) from internal view (state).
o Encapsulation protects the integrity of an object’s data.

e A class’s instance variables should always be private.
o No code outside the class can directly access/change it.

61

Adding Privacy

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.balance); // doesn’t work

N

Only accessible inside
BankAccount.java

62

Geftters & Setters

// BankAccountProgram.java

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
dukeAccount.deposit(22);

println(“Duke has $” + dukeAccount.getBalance()); // but this does!

63

Geftters & Setters

e To allow the client to reference private instance variables, we
define public methods in the class that
o set aninstance variable's value (“getters”), and
o get (refurn) an instance variable’s value (“setters”)

e Getters and setters prevent instance variables from being
tampered with.

64

Example: BankAccount

public class BankAccount {
private String name;
private double balance;

// “setter”
public void setName(String newName) {
if (newName.length() > 0) {
this.name = newName;

65

Example: BankAccount

public class BankAccount {
private String name;
private double balance;

// “setter”
public void setName(String newName) {
if (newName.length() > 0) {
this.name = newName;

}
// “getters”

public String getName() {
return this.name;

}
public double getBalance() {

return this.balance;

Geftters & Setters

// BankAccountProgram.java
BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);

dukeAccount.setName(“Duke J.”);
String name = dukeAccount.getName();

double balance = dukeAccount.getBalance();

println(name + “ has $” + balance); // ‘“Duke J. has $50”

67

One Special Method...

BankAccount ba = new BankAccount(...);

How canw thise
an we do fhis println(ba); // ba isn’t a String!

68

One Special Method...

BankAccount ba = new BankAccount(...);

How canw thise
an we do fhis println(ba); // ba isn’t a String!

public String toString() {

We define a toString() method return this.name _
(inside the class file) * has $” + this.balance;

69

One Special Method...

How can we do this?

We define a toString() method
(inside the class file)

And now this works!

BankAccount ba = new BankAccount(...);
println(ba); // ba isn’t a String!

public String toString() {
return this.name
+ “ has $” + this.balance;

BankAccount ba = new BankAccount(...);
println(ba); // prints “Duke has $58”

70

Classes Are Like Blueprints

BankAccount Class (blueprint)

Blueprin’rfor

State: Has name BankAccount

Has balance

Behavior: Can deposit
Can withdraw

N ~N

w
i |

=

BankAccount #1 (variable) BankAccount #1 (variable)

State: name = “Duke”
balance = 50

Behavior: Can deposit
Can withdraw

State: name = “Karel”
balance = 1.99

Behavior: Can deposit
Can withdraw

71

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)
2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

*all class methods and constructors have access fo a this reference

72

Example: BankAccount

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

74

Hedgehog Show

True story: in a town in Washington, there is an annual
Hedgehog Show! (ask Sarai)

75

Hedgehog Show

It’s a hedgehog day

ogGathenngcgwﬂlopenatwam y, Saturday, Oct. 8, and run until
g .m. at the epot Arts Center and Gallery, 611 R Avenue in Anacortes. Mmlubn Is
$5 for adults and $3 for seniors and children. Highlights of mo show will be an discus-
sion of hodgohoq judging standards, as well as an auction shopplng for
morehandiee n of the show proceeds wil
Center and Gallery, and Hodoohoos Nonlmest Visit the Hedge-
hogs Nonhwost Web site at www.hhnw.hedgehogcentral

The gathering is like a dog or cat show — but with
hedgehogs instead. They are judged in three
categories: attitude, health and shape.

.
a '-.

UQ“‘

-

.y

vt .,

Rachel Griffin, 6, holds one of the Pointer sisters, a pair of three-year-old African Hedgehogs owner LY
Carroll Meek adopted. An avid needlepointer, Meek named the sisters PetitPointe and GrossePointe.

76

Hedgehog Show

e Let’s help keep track of hedgehogs at the Hedgehog Show!
e To do that, we'll need a new variable type, Hedgehog.
e How would you design a Hedgehog variable type?

77

Hedgehog Show

e Let’s help keep track of hedgehogs at the Hedgehog Show!
e To do that, we'll need a new variable type, Hedgehog.
e How would you design a Hedgehog variable type?

The gathering is like a dog or cat show — but with
hedgehogs instead. They are judged in three
categories: attitude, health and shape.

e What state/properties (instance variables) and behaviors (methods)
should it have?

78

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

79

- A closs ...

0] g

==

. A class defines ©
2% new variable type.

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)
2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

*all class methods and constructors have access fo a this reference

82

Plan for Today

Revew: Data Structures
Classes

Practice: Hedgehog Show
Recap

Next time: Classes Practice

83

