Classes ||

Lecture 22

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

e Assignment 5 due Monday August 5th at TOAM

Plan for Today

e Review: Classes
e Bouncing Ball
e Emailer

_ What do we know
23 about classes?

. A class defines a
2% new variable type.

Classes Are Like Blueprints

~

Hedgehog Class (blueprint

State: Has name
Has color
Has cuteness level
Behavior: Can eat
Can run*

Blueprin’rfor
Hedgehog

l Can curl up

~N

Hedgehog #1 (variable)

State: name = “Walnoot”
color = Brown
cuteness = 10 (Very cute)

Behavior: Can eat

Hedgehog #2 (variable)

State: name = “Nutmeg”
color = Snowflake
cuteness = 15 (VERY cute)

Hedgehog #3 (variable)

State: name = “Ruffles”
color = Beige
cuteness = 50 (speechless)

'
Behavior: Can eat Lamec., Behavior: Can eat o
Can run Can run] - Can run e
Can curl up Cancurlup %, i3~ Can curl up ‘

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)
2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

You've seen them before...

GRect.java

public class GRect {
public GRect(double width, double height) {
this.width = width;

this.height = height;
}

GRect square =new GRect(10, 10);
| I

type our object (variable) It's an instance of the GRect class!

GRect.java

public class GRect {

public double getX() {

return this.xc;

}
}

double x = square.getX()
I

Method defined in GRect class that
we can call on our object

GRect.java

public class GRect {
private double width;
public GRect(double width, double height) {

}

Unpacking GRect

GRect.java

public class GRect {

3 Ingredients:

GRect.

Jjava

public class GRect {

// 1. Instance variables

private
private
private
private
private
private

double width = 9;

double height = 0;

double yc = 0;
double xc = 0;

boolean isFilled =

boolean isVisible

false;
= false;

3 Ingredients:

1. Define the variables each
instance stores

GRect.java

bli 1 GRect . .
public class GRect { 3 Ingredients:
// 1. Instance variables

private double width = 0; .
private double height = 0; L. DEﬁnE the variables each

private double yc = 0; .
private double xc = 0; Instance stores
private boolean isFilled = false;
private boolean isVisible = false;

2. Define the constructor used

// 2. Constructor(s) i
public GRect(double width, double height) { w0 ﬂ]ﬂke d new Instance

this.width = width;
this.height = height;
}

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public
this.
this.

}
public

this.
this.
this.
this

ass GRect {

nstance variables

double width = 9;

double height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

onstructor(s)

GRect(double width, double height) {
width = width;

height = height;

GRect(double x, double v,
double width, double height) {
XC = X;
yc = VY5
width = width;

.height = height;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public
this.
this.

}
public

this.
this.
this.
this

ass GRect {

variables

width = 0;

height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

nstance
double
double

onstructor(s)

GRect(double width, double height) {
width = width;

height = height;

GRect(double x, double v,
double width, double height) {

XC = X;

yc = VY;

width = width;
.height = height;

// 3. Public methods
public double getWidth() {
return this.width;

}

public double getHeight() {
return this.height;

}

public

}

this.

public

}

this.
this.

void setFilled(boolean newlsFilled) {
isFilled = newlsFilled;

void move(double dx, double dy) {
XC += dx;
yc += dy;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

3. Define the methods you can
call on an instance

Making our own classes

Bouncing Ball

BouncingBalls

@
N\

N

o

Making a Ball variable type

1. Define the each instance stores (think: state/properties)

Each ball has its own GOval (let’s call it circle)

Each ball has its own dx
Each ball has its own dy

2. Define the used to make @ new instance
Set initial values for all the instance vars

j. Define the you can call on an instance (think: behaviors)
heartbeat()

getGOval()

public class Ball {

private static final int BALL_SIZE = 20;

// 1: what variables make up a ball? 1

private GOval circle; /Ij each ball has a GOval shape A]' lnStance Va“ables dEﬁnE What
pr%vate double dx; // each ball has a dx makes up 3 Var|ab|e Of type Ba“
private double dy; // each ball has a dy

public class Ball {
private static final int BALL_SIZE = 20;

// 1: what variables make up a ball?

private GOval circle; // each ball has a GOval shape

private double dx; // each ball has a dx

private double dy; // each ball has a dy

// 2. what happens when you make a new ball?

public Ball() { e 0 The constructor defines what
// make the ball's circle
this.circle = new GOval(@, ©, BALL_SIZE, BALL_SIZE); happens When y0U [El” new

this.circle.setFilled(true);
this.circle.setColor(Color.BLUE);

// gets a random dx and a random dy
this.dx = getRandomSpeed();
this.dy = getRandomSpeed();

// 3. what methods can you call on a ball? — :1] Pub“[me[hods deﬁne What

public GOval getGOval() {

return this.circle; the “client” can call on

: Instances

public void heartbeat(int screenWidth, int screenHeight) {
this.circle.move(this.dx, this.dy);
reflectOffWalls(screenWidth, screenHeight);

. . . o | 4. We can also have
private void reflectOffWalls(int screenWidth, int screenHeight) {

if(this.circle.getY() < 0) { (think hE'perS)

this.dy *= -1;
}

if(this.circle.getY() > screenHeight - BALL_SIZE) {
this.dy *= -1;

}

if(this.circle.getX() < 0) {
this.dx *= -1;

}

if(this.circle.getX() > screenWidth - BALL_SIZE) {
this.dx *= -1;

}

}

private double getRandomSpeed() {
RandomGenerator rg = RandomGenerator.getInstance();
double speed = rg.nextDouble(1,3);
if(rg.nextBoolean()) {
speed *= -1;
}

return speed;

circle
dx
dy

circle c circle
a dx R dx
dy - dy

~ circle
circle dx
dx dy

dy

But if each Ball instance has a copy of each instance variable...

.. how does Java know which one to use?

this

* all class methods and constructors have access to a this reference

public class BouncingBall extends GraphicsProgram {
mmm) public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

code

heap

Stack frames
memow

run()

public class BouncingBall extends GraphicsProgram {

public void run() {
// make a few new bouncing balls
mmm) Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

code

Stack frames

run()

memory

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
mmm) Ball b = new Ball();

// call a method on one of the balls
a.heartbeat(getWidth(), getHeight());

code

Stack frames

memory

run()

a 42 &—

b 52 &—_

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls

mmm) 2.heartbeat(getWidth(), getHeight());

}

code

Stack frames

run()

a 42 &—

b 52 &—_

memory

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();
reflectOffWalls(sWidth, sHeight);

}
}
code
Stack frames
memory
run() a 42 —
b 52 &—_
heartbeat())
this
sWidth 800
sHeight 600

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());
}

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();
reflectOffWalls(sWidth, sHeight);

heartbeat() was called on ball a

= So, this refersto a

&L

code

Stack frames

run() 3 42 e—

b 52 &—_

heartbeat() this -
i

sWidth 800

sHeight 600

memory

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();
reflectOffWalls(sWidth, sHeight);

heartbeat() was called on ball a

&L

} = So, this refersto a
}
code
Stack frames
memaory
run() a 42 —
b 52 &—_
heartbeat
0 this 42
sWidth 800
sHeight 600

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());

public void heartbeat(int sWidth, int sHeight) {

mmm) this.circle.move();
reflectOffWalls(sWidth, sHeight);

heartbeat() was called on ball a

&L

} = So, this refersto a
}
code
Stack frames
memaory
run() a 42 —
b 52 &—_
heartbeat
0 this 42
sWidth 800
sHeight 600

dy

circle
dx
a circle dy
dx ‘

Java knows which instance you called @
method on

One more note

Index © Index 1 Index 2

ArrayList<Ball>

Index © Index 1 Index 2

ArrayListBally halls

newBall

I

Ball newball = new Ball()

Index © Index 1 Index 2

newBall °

nalls.append(newdall)

Index © Index 1 Index 2 Index 3

nalls.append(newdall)

Let’s build something bigger

[NON) SpreadTheWord

Sending emails...
toAddress: I @stanford.edu
subject: Greetings from Lecture
body: Dear [,

I hope this email finds you well.
As you know, CS106A is a huge class with many wonderful people in it. In lecture today we built a

program to help you meet a few fellow students. Here are five random people in CS106A. You can
(optionally) introduce yourself:

Elena, @stanford.edu
Moritz, @stanford.edu
Georgiana, stanford.edu
Yazan, stanford.edu

Jose, -@stanford.edu

All the best,
Laura & Sarai

P.S. Today we covered 'classes' which introduces a whole new way of thinking about programs

Plan for Today

e Review: Classes
e Bouncing Ball
e Emailer

Next Time: Intferactors

43

