

●

●
●
●

You’ve seen them before...

GRect square = new GRect(10, 10);

type our object (variable) It’s an instance of the GRect class!

public class GRect {
 public GRect(double width, double height) {
 this.width = width;
 this.height = height;
 }
 ...
}

GRect.java

double x = square.getX()

Method defined in GRect class that
we can call on our object

public class GRect {
 ….
 public double getX() {
 return this.xc;
 }
}

GRect.java

Unpacking GRect

public class GRect {
 private double width;
 public GRect(double width, double height) {
 ...
 }
 ...
}

GRect.java

public class GRect {

GRect.java

3 Ingredients:

public class GRect {

 // 1. Instance variables
 private double width = 0;
 private double height = 0;
 private double yc = 0;
 private double xc = 0;
 private boolean isFilled = false;
 private boolean isVisible = false;

GRect.java

3 Ingredients:

1. Define the variables each
 instance stores

public class GRect {

 // 1. Instance variables
 private double width = 0;
 private double height = 0;
 private double yc = 0;
 private double xc = 0;
 private boolean isFilled = false;
 private boolean isVisible = false;

 // 2. Constructor(s)
 public GRect(double width, double height) {
 this.width = width;
 this.height = height;
 }

GRect.java

3 Ingredients:

1. Define the variables each
 instance stores

2. Define the constructor used
 to make a new instance

public class GRect {

 // 1. Instance variables
 private double width = 0;
 private double height = 0;
 private double yc = 0;
 private double xc = 0;
 private boolean isFilled = false;
 private boolean isVisible = false;

 // 2. Constructor(s)
 public GRect(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public GRect(double x, double y,
 double width, double height) {
 this.xc = x;
 this.yc = y;
 this.width = width;
 this.height = height;
 }

GRect.java

3 Ingredients:

1. Define the variables each
 instance stores

2. Define the constructor used
 to make a new instance

public class GRect {

 // 1. Instance variables
 private double width = 0;
 private double height = 0;
 private double yc = 0;
 private double xc = 0;
 private boolean isFilled = false;
 private boolean isVisible = false;

 // 2. Constructor(s)
 public GRect(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public GRect(double x, double y,
 double width, double height) {
 this.xc = x;
 this.yc = y;
 this.width = width;
 this.height = height;
 }

GRect.java

 // 3. Public methods
 public double getWidth() {
 return this.width;
 }

 public double getHeight() {
 return this.height;
 }

 public void setFilled(boolean newIsFilled) {
 this.isFilled = newIsFilled;
 }

 public void move(double dx, double dy) {
 this.xc += dx;
 this.yc += dy;
 }

}

3 Ingredients:

1. Define the variables each
 instance stores

2. Define the constructor used
 to make a new instance

3. Define the methods you can
 call on an instance

Making our own classes

Bouncing Ball

Making a Ball variable type
1. Define the variables each instance stores (think: state/properties)

Each ball has its own GOval (let’s call it circle)
Each ball has its own dx
Each ball has its own dy

2. Define the constructor used to make a new instance
Set initial values for all the instance vars

3. Define the methods you can call on an instance (think: behaviors)
heartbeat()
getGOval()

public class Ball {

private static final int BALL_SIZE = 20;

// 1: what variables make up a ball?

private GOval circle; // each ball has a GOval shape

private double dx; // each ball has a dx

private double dy; // each ball has a dy

// 2. what happens when you make a new ball?

public Ball() {

// make the ball's circle

this.circle = new GOval(0, 0, BALL_SIZE, BALL_SIZE);

this.circle.setFilled(true);

this.circle.setColor(Color.BLUE);

// gets a random dx and a random dy

this.dx = getRandomSpeed();

this.dy = getRandomSpeed();

}

1. Instance variables define what
makes up a variable of type Ball

2. The constructor defines what
happens when you call new

public class Ball {

private static final int BALL_SIZE = 20;

// 1: what variables make up a ball?

private GOval circle; // each ball has a GOval shape

private double dx; // each ball has a dx

private double dy; // each ball has a dy

// 2. what happens when you make a new ball?

public Ball() {

// make the ball's circle

this.circle = new GOval(0, 0, BALL_SIZE, BALL_SIZE);

this.circle.setFilled(true);

this.circle.setColor(Color.BLUE);

// gets a random dx and a random dy

this.dx = getRandomSpeed();

this.dy = getRandomSpeed();

}

1. Instance variables define what
makes up a variable of type Ball

2. The constructor defines what
happens when you call new

// 3. what methods can you call on a ball?

public GOval getGOval() {

return this.circle;

}

public void heartbeat(int screenWidth, int screenHeight) {

this.circle.move(this.dx, this.dy);

reflectOffWalls(screenWidth, screenHeight);

}

// private methods are allowed

private void reflectOffWalls(int screenWidth, int screenHeight) {

if(this.circle.getY() < 0) {

this.dy *= -1;

}

if(this.circle.getY() > screenHeight - BALL_SIZE) {

this.dy *= -1;

}

if(this.circle.getX() < 0) {

this.dx *= -1;

}

if(this.circle.getX() > screenWidth - BALL_SIZE) {

this.dx *= -1;

}

}

3. Public methods define what
the “client” can call on
instances

4. We can also have private
methods (think helpers)

// private methods are allowed
private void reflectOffWalls(int screenWidth, int screenHeight) {

if(this.circle.getY() < 0) {
this.dy *= -1;

}
if(this.circle.getY() > screenHeight - BALL_SIZE) {

this.dy *= -1;
}
if(this.circle.getX() < 0) {

this.dx *= -1;
}
if(this.circle.getX() > screenWidth - BALL_SIZE) {

this.dx *= -1;
}

}

private double getRandomSpeed() {
RandomGenerator rg = RandomGenerator.getInstance();
double speed = rg.nextDouble(1,3);
if(rg.nextBoolean()) {

speed *= -1;
}
return speed;

}

}

}

4. We can also have private
methods (think helpers)

But if each Ball instance has a copy of each instance variable...

a

… how does Java know which one to use?

circle
dx
dy

circle
dx
dy

d

b

e

c

circle
dx
dy

circle
dx
dy circle

dx
dy

this

 * all class methods and constructors have access to a this reference

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory
Stack frames heap

code

run()

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory
Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory
Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory
Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth 800

sHeight 600

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth 800

sHeight 600

heartbeat() was called on ball a
⇒ So, this refers to a

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth

42

800

sHeight 600

heartbeat() was called on ball a
⇒ So, this refers to a

public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth

42

800

sHeight 600

heartbeat() was called on ball a
⇒ So, this refers to a

Java knows which instance you called a
method on

a
circle
dx
dy

b
circle
dx
dy

c
circle
dx
dy

42

circle
dx = -1.2
dy = -1.1

circle
dx = 2.0
dy = 1.5

circle
dx = 1.8
dy = -2.2

52 62

42 52 62

Index 0 Index 1 Index 2

ArrayList<Ball> balls

balls

One more note

42

circle
dx = -1.2
dy = -1.1

circle
dx = 2.0
dy = 1.5

circle
dx = 1.8
dy = -2.2

52 62

42 52 62

Index 0 Index 1 Index 2

ArrayList<Ball> balls

balls

circle
dx = 1.8
dy = -2.2

72

72

Ball newBall = new Ball()

newBall

42

circle
dx = -1.2
dy = -1.1

circle
dx = 2.0
dy = 1.5

circle
dx = 1.8
dy = -2.2

52 62

42 52 62

Index 0 Index 1 Index 2

balls

circle
dx = 1.8
dy = -2.2

72

72

balls.append(newBall)

newBall

42

circle
dx = -1.2
dy = -1.1

circle
dx = 2.0
dy = 1.5

circle
dx = 1.8
dy = -2.2

52 62

42 52 62

Index 0 Index 1 Index 2

balls

circle
dx = 1.8
dy = -2.2

72

72

balls.append(newBall)

Index 3

Let’s build something bigger

42

●
●
●

