
Interactors

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 23

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.



Announcements

● Assignment 5 was due at 10am
● Assignment 6 will be released after lecture

○ Note: No late days may be used on Assignment 6

● We are no longer accepting regrade requests for the 
Midterm.

2



Plan for Today

● Review: Classes
● Interacting with Interactors
● JLabels, JTextFields, JButtons
● Example: MadLibs
● Example: MyDrawingProgram

3



Learning Goal for Today

Know how to add and cause changes in your program with 

Interactors

4



What do we know 
about classes?

5



A class defines a 
new variable type.

6



Review: Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

7

 * all class methods and constructors have access to a this reference



Review: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

// Step 2: how to create a new BankAccount

public BankAcount(String name) { 

this.name = name; 

this.balance = 0; 

} 

// Step 3: the things a BankAccount can do 

public void deposit(double amount) { 

this.balance += amount; 

} 

public boolean withdraw(double amount) { 

if (this.balance >= amount) { 

this.balance -= amount; 

return true; 

} 

return false; 

}

} 8



Review: Getters & Setters
public class BankAccount {

private String name; 

private double balance;

…
// “setter”

public void setName(String newName) { 

if (newName.length() > 0) { 

this.name = newName; 

} 

}

// “getters”

public String getName() { 

return this.name;

}

public double getBalance() { 

return this.balance;

}

} 9



public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth

42

800

sHeight 600

heartbeat() was called on ball a
⇒ So, this refers to a



A Note About Classes

extends is the word we use when a Class is based off of 
another class!

implements is the word we use when we’re promising our 
Class will define certain things. Can also be used to share 
constants between Classes!

We’ll see this in an example later.
11



MORE Interaction

Right now, we know how to read input from mouse clicks, 
movement, and typed user input.

Can we detect even more interactions?

12

Of course!*

* How many times can I use this joke before we get sick of this...



Of Course, We Can!

13



Interactors

We can use Interactors to detect more complex interactions 
from our users.

Today, we’ll be looking at JLabels, JTextFields, and JButtons.

14



JComponent is the SuperClass!

15

JComponent

JButton JLabel JTextField



Regions

Interactors can be placed in 5 regions on the screen.

● The center is usually where things happen!
○ The ConsoleProgram adds the Console there.
○ The GraphicsProgram add the Canvas there.

● We only see the other regions of the screen if we add 
interactors there using add(component, REGION)

● Interactors are automatically centered in their region. 16



Which Libraries to Import

import javax.swing.*;

import java.awt.event*;

17



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

} 18



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){

// add interactors here!

}

} 19



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

}

} 20



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

}

} 21

The text of the label

The region where we’re creating the 
label.



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

}

} 22

We didn’t create a new variable for the 
label. We created it and added it in 
this one step.



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

}

} 23



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

}

} 24

We want to access our 
JTextField later, so we’re 
making it an instance 
variable.



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

add(textField, WEST);

}

} 25



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

add(textField, WEST);

addActionListeners();

}

} 26

In order to detect 
actions in these fields, 
we must
addActionListeners()



actionPerformed

Using addActionListeners() allows us to detect actions. This 
line of code must occur after we’ve added our 
JComponents.

This allows us to use actionPerformed to do actions when 
someone interacts with our interactors.

27



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

// Similar to mouseMoved, mouseClicked, etc.

// Only occurs when an action is performed

// e is the event that was detected

}

} 28



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

// If we click the button, this will trigger

String text = textField.getText();

println(text);

}

} 29



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

// If we click the button, this will trigger

String text = textField.getText();

println(text);

}

} 30



We’ve Learned Enough to Create a Game!

MadLibs is a fill in the blank game where we ask for names, 
adjectives, verbs, etc and use the words given to us by the 
user to create a humorous blurb.

Let’s create a simple MadLibs game!

31

Duke is a good 
name...



MadLibs

32



Let’s Code It!

33



MadLibs Code

34



What If We Have TWO Buttons?

actionPerformed triggers if a button is pressed. 

If we press two buttons, how does it know which button was 
pressed?

35



What If We Have TWO Buttons?

36

public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){

println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){

println(“Button 2 was pressed”);

}

}



Two Button Example 1

37



What If We Have TWO Buttons?

38

private JButton duke = new JButton("Duke");

private JButton karel = new JButton("Karel");

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

if(e.getSource() == duke){

println("Duke is the best mascot!");

} else if (e.getSource() == karel){

println("Karel is the best mascot!");

}

}



What If We Have TWO Buttons?

39

private JButton duke = new JButton("Duke");

private JButton karel = new JButton("Karel");

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“Duke”)){

println("Duke is the best mascot!");

} else if (e.getActionCommand().equals(“Karel”)){

println("Karel is the best mascot!");

}

}



Two Button Example 2

40



Pressing Enter

41

Do we need a button? What if I 
just press “enter” in a text box?



Pressing Enter

42

import javax.swing.*;

import java.awt.event*;

public class PressingEnter extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

// the next two lines allows us to detect if we press “Enter” in this

// textField

textField.addActionListener(this);

textField.setActionCommand(“Go”);

add(textField, NORTH);

}

}



Pressing Enter

43

import javax.swing.*;

import java.awt.event*;

public class PressingEnter extends ConsoleProgram {

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“Go”)){

println(“You pressed enter in the textField!”);

}

}

}



Pressing Enter

44

Does this mean we can either 
press enter OR use a button? 
Why can’t we do both? 😢



Pressing Enter

A lot of times, a text field has a button that “goes with it”. If 
you set the text fields action command to the name of the 
button, we can detect pressing “enter” and pressing the 
button!

45



Pressing Enter

46

public void init(){

JButton goButton = new JButton(“Go”);

add(goButton, NORTH);

JTextField textField = new JTextField(15);

textField.addActionListener(this);

textField.setActionCommand(“Go”);

add(textField, NORTH);

addActionListeners();

}

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“Go”)){

println(“You pressed enter OR you pressed the button!”);

}

}



Pressing Enter

47

public void init(){

JButton goButton = new JButton(“Go”);

add(goButton, NORTH);

JTextField textField = new JTextField(15);

textField.addActionListener(this);

textField.setActionCommand(“Go”);

add(textField, NORTH);

addActionListeners();

}

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“Go”)){

println(“You pressed enter OR you pressed the button!”);

}

}



Graphics and Interactors
Let’s use our new knowledge 
to create a drawing game! 
We’ll let the user choose 
which shapes to draw on the 
canvas and add their name 
to their drawing!

We’ll even let the artist save 
the Drawing using their name!

48



Let’s Code It!

49



Drawing Class Code

50



Drawing Program Code

51



Plan for Today

● Review: Classes
● Interacting with Interactors
● JLabels, JTextFields, JButtons
● Example: MadLibs
● Example: MyDrawingProgram

52


