Interactors

Lecture 23

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

e Assignment 5 was due at 10am

e Assignment 6 will be released after lecture
o Note: No late days may be used on Assignment 6

e We are no longer accepting regrade requests for the
Midterm.

Plan for Today

Review: Classes

Interacting with Interactors
JLabels, JTextFields, JButtons
Example: MadlLibs

Example: MyDrawingProgram

Learning Goal for Today

Know how to add and cause changes in your program with

Interactors

_ What do we know
23 about classes?

. A class defines ©
2% new variable type.

Review: Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)
2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

*all class methods and constructors have access fo a this reference

Review: BankAccount

public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: how to create a new BankAccount
public BankAcount(String name) {
this.name = name;
this.balance = 9;
}
// Step 3: the things a BankAccount can do
public void deposit(double amount) {
this.balance += amount;
}
public boolean withdraw(double amount) {
if (this.balance >= amount) {
this.balance -= amount;
return true;

}

return false;

Review: Getters & Setters

public class BankAccount {
private String name;
private double balance;

// “setter”
public void setName(String newName) {
if (newName.length() > 0) {
this.name = newName;

}
// “getters”

public String getName() {
return this.name;

}
public double getBalance() {

return this.balance;

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());

public void heartbeat(int sWidth, int sHeight) {

mmm) this.circle.move();
reflectOffWalls(sWidth, sHeight);

heartbeat() was called on ball a

&L

} = So, this refersto a
}
code
Stack frames
memaory
run() a 42 —
b 52 &—_
heartbeat
0 this 42
sWidth 800
sHeight 600

A Note About Classes

extends is the word we use when a Class is based off of
another class!

implements is the word we use when we're promising our
Class will define certain things. Can also be used to share
constants between Classes!

We'll see this in an example later.

MORE Interaction

Right now, we know how to read input from mouse clicks,
movement, and typed user input.

Of coursel*
Can we detect even more interactions@e /

* How many times can | use this joke before we get sick of this... 12

Of Course, We Canl

JButton JCheckBox JRadioBox JLabel
| OK [vi Check ® Radio O
Image and Text
JTextField JSlider JToolBar
Frames Per Second Text-Only Label
Years: |30 | (”) l ‘A
0 ‘Ih 20 .
JComboBox JList JMenuBar, JMenu, JMenultem
lpill January Another Menu
d February
March
April O Both text and icon
® A radio button menu item
[0 A check box menu item
A submenu »
JColorChooser JFileChooser JTable JTree
FirstName | LastName | Favorite F I Music
Jeff Dinkins @ [Classical
I = i ©- [Beethoven
CEERT Look in: =ca Ewan Dinkins 0 Braiee
HE T T T EeEE Ay Fowler &
T [TEEEE 9 emacslib o er—] Mozart
BEL |l ' [Jaz
] host-news Navid GRAam ©-] Rock

™ iava

INnteractors

We can use Interactors to detect more complex interactions
from our users.

Today, we'll be looking at JLabels, JTextFields, and JButtons.

JComponent is the SuperClass!

JComponent

N

JButton JLabel JTextField

Regions

Interactors can be placed in 5 regions on the screen.
NORTH

CENTER

—“noms
—n>m

SOUTH

e The centeris usually where things happen!

o The ConsoleProgram adds the Console there.
o The GraphicsProgram add the Canvas there.

e We only see the other regions of the screen if we add
interactors there using add(component, REGION)

e Inferactors are automatically centered in their region. o
O

Which Libraries 1o Import

import javax.swing.*;
import java.awt.event*;

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){
// add interactors here!

Qur First Interactor

I BON) OurFirstinteractor [completed]
import javax.swing.*; ; 'm a JLabell
import java.awt.event*;
public class ourFirstInteractor extends ConsoleProgram {
!
public void init(){ '
add(new JLabel(“I’m a JLabel!”), NORTH);
}
} 20

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

The text of the label

The region where we're creating the

public void init(){ — label.
add(new JLabel(“I’m a JLabel!”), NORTH);

21

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

We didn’'t create a new variable for the
label. We created it and added it in

public void init(){ this one step.
add(new JLabel(“I’m a JLabel!”), NORTH);

22

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

public void init(){
add(new JLabel(“I’m a JLabel!”), NORTH);
add(new JButton(“I’m a Button!”), SOUTH);

| @ (] OurFirstinteractor [completed]

I’m a JLabel!

I’m a Button!

23

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {
private JTextField textField = new JTextField(15); =
public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);
add(new JButton(“I’m a Button!”), SOUTH);

We want to access our
JTextField later, so we're
making it an instance
variable.

24

Qur First Interactor

. | @ ® OurFirstinteractor [completed] |
import javax.swing.*; m a JLabel!
import java.awt.event*; '
public class ourFirstInteractor extends ConsoleProgram {
|
private JTextField textField = new JTextField(15); |
public void init(){ |
add(new JLabel(“I’m a JLabel!”), NORTH);
add(new JButton(“I’m a Button!”), SOUTH);
add(textField, WEST);
}
I’m a Button!
} 25

Qur First Interactor

. . . | @ ® OurFirstinteractor [completed] |
import javax.swing.*; m a JLabel!

import java.awt.event*;
public class ourFirstInteractor extends ConsoleProgram {
private JTextField textField = new JTextField(15);

public void init(){ |
add(new JLabel(“I’m a JLabel!”), NORTH);
add(new JButton(“I’m a Button!”), SOUTH);
add(textField, WEST);
addActionListeners(); In order to detect

} actions in these fields,

we must
} addActionListeners()

I’m a Button!

26
O

actionPerformed

Using addActionListeners() allows us to detect actions. This
line of code must occur after we've added our
JComponents.

This allows us to use actionPerformed to do actions when
someone interacts with our interactors.

27

Qur First Interactor

. . . | @ ® OurFirstinteractor [completed] |
import javax.swing.*; m a JLabel!
import java.awt.event*; '
public class ourFirstInteractor extends ConsoleProgram {
|
. // added JComponents, etc here |
public void actionPerformed(ActionEvent e){ |
// Similar to mouseMoved, mouseClicked, etc.
// Only occurs when an action is performed
// e 1is the event that was detected
} I’m a Button!
} 28

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {
. // added JComponents, etc here
public void actionPerformed(ActionEvent e){
// If we click the button, this will trigger

String text = textField.getText();
println(text);

}

]
I love CS106A|

OurFirstinteractor [completed]

I’m a JLabel!

I’m a Button!

29

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {
. // added JComponents, etc here
public void actionPerformed(ActionEvent e){
// If we click the button, this will trigger

String text = textField.getText();
println(text);

!
I love CS106A!
|

OurFirstinteractor [completed]

I’m a JLabel!

I love CS106A!

I’'m alﬂgon!

30

We've Learned Enough to Create a Game!

MadlLibs is a fill in the blank game where we ask for names,
adjectives, verbs, etc and use the words given to us by the
user to create a humorous blurb.

Duke is a good
/ name...

Let’s create a simple MadLibs gamel é

31

MadlLibs

@ @ MadLibsSoln [completed]
CS106A MadLibs!
Fill in the blanks to create your MadLibs!

Name
Past Tense Verb

Feeling

Coding Concept

Create

32

Let’'s Code 1!

MadlLibs Code

public class MadLibsSoln extends ConsoleProgram {

private JTextField nameField = new JTextField(15);
private JTextField verbField = new JTextField(15);
private JTextField feelingField = new JTextField(15);
private JTextField codeField = new JTextField(15);

public void init() {
add(new JLabel("CS106A MadLibs!"), NORTH);
add(new JLabel("Name"), WEST);
add(nameField, WEST);
add(new JLabel("Past Tense Verb"), WEST);
add(verbField, WEST);
add(new JLabel("Feeling"), WEST);
add(feelingField, WEST);
add(new JLabel("Coding Concept"), WEST);
add(codeField, WEST);
add(new JButton("Create"), WEST);
addActionListeners();

}

public void run(){
println("Fill in the blanks to create your MadLibs! \n");

public void actionPerformed(ActionEvent e) {
String name = nameField.getText();
String verb = verbField.getText();
String feeling = feelingField.getText();
String code = codeField.getText();

createMadLib(name, verb, feeling, code);

}

private void createMadLib(String name, String verb, String feeling, String code) {
println("0On " + name + "'s first day of CS106A they accidentally woke up");
println("late for class! They " + verb + " to class, but when " + name);
println("arrived at Bishop Auditorium, no one was there! " + name + " was ");
println(feeling + ". Well, good thing no one uses " + code + " anyways.");

34
}
e

What If We Have TWO Buttonse

actionPerformed triggers if a button is pressed.

If we press two buttons, how does it know which button was
pressede

35

What If We Have TWO Buttonse

Method Description

e.getActionCommand() | a text description of the event
(e.g., the text of the button clicked)

e.getSource() the interactor that generated the event

public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){
println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){
println(“Button 2 was pressed”);

}

36

Two Button Example 1

| JON) TwoButtons [completed]

Button 1

Button 1 was pressed
Button 2 was pressed
Button 1 was pressed

Button 2 37

What If We Have TWO Buttonse

Method Description

e.getActionCommand() |a text description of the event
(e.g., the text of the button clicked)

e.getSource() the interactor that generated the event

private JButton duke = new JButton("Duke");
private JButton karel = new JButton("Karel");

. // added JComponents, etc here

public void actionPerformed(ActionEvent e){
if(e.getSource() == duke){
println("Duke is the best mascot!");
} else if (e.getSource() == karel){
println("Karel is the best mascot!");

38

What If We Have TWO Buttonse

Method Description

e.getActionCommand() |a text description of the event
(e.g., the text of the button clicked)

e.getSource() the interactor that generated the event

1] "
J

" "
J

. // added JComponents, etc here

public void actionPerformed(ActionEvent e){
if(e.getActionCommand().equals(“Duke”)){
println("Duke is the best mascot!");
} else if (e.getActionCommand().equals(“Karel”)){
println("Karel is the best mascot!");

39

Two Button Example 2

| NON) FavoriteMascot [completed]

Duke

Duke is the best mascot!
Karel is the best mascot!
Karel is the best mascot!
Duke is the best mascot!
Duke is the best mascot!
Karel is the best mascot!
Duke is the best mascot!

Karel 40

Pressing Enter

Do we need a buttone What if |
just press “enter” in a text boxe

/

41

Pressing Enter

import javax.swing.*;
import java.awt.event*;

public class PressingEnter extends ConsoleProgram {
private JTextField textField = new JTextField(15);

public void init(){
// the next two lines allows us to detect if we press “Enter” in this
// textField
textField.addActionListener(this);
textField.setActionCommand(“Go”);

add(textField, NORTH);

42

Pressing Enter

import javax.swing.*;
import java.awt.event*;

public class PressingEnter extends ConsoleProgram {
. // added JComponents, etc here
public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“Go”)){
println(“You pressed enter in the textField!”);

43

Pressing Enter

Does this mean we can either
press enter OR use a butfton?
Why can't we do both?2 &

/

44

Pressing Enter

A lot of times, a text field has a button that “goes with it". If
you set the text fields action command to the name of the

button, we can detect pressing “enter” and pressing the
button!

45

Pressing Enter

public void init(){
JButton goButton = new JButton(“Go”);
add(goButton, NORTH);

JTextField textField = new JTextField(15);
textField.addActionListener(this);
textField.setActionCommand(“Go”);
add(textField, NORTH);
addActionListeners();

public void actionPerformed(ActionEvent e){
if(e.getActionCommand().equals(“Go”)){
println(“You pressed enter OR you pressed the button!”);

44

Pressing Enter

public void init(){
JButton goButton =|new JButton(“Go”);
add(goButton, NORTH);

JTextField textField = new JTextField(15);
textField.addActionListener(this);
textField.setActionCommand(“Go”);
add(textField, NORTH);
addActionListeners();

public void actionPerformed(ActionEvent e){
if(e.getActionCommand().equals(“Go”)b{
println(“You pressed enter OR you pressed the button!”);

47

Graphics and Interactors

Let's use our new knowledge =« oo
to create a drawing gamel

We'll let the user choose

which shapes to draw on the

canvas and add their name cuwen
to their drawing!

We'll even let the artist save
the Drawing using their namel

eeeeeeeee

48

Let’'s Code 1!

Drawing Class Code

import acm.graphics.x;
import java.util.x;

public class Drawing{

private String artist;
private ArraylList<GObject> shapes;

public Drawing(String artist) {
this.artist = artist;
this.shapes = new ArraylList<>();

}
public String getArtist() {
return this.artist;

public GObject getShapeAt(int index) {
return this.shapes.get(index);

public void addShape(GObject shape) {
this.shapes.add(shape);

public int numShapes() {
return this.shapes.size();

public String toString(){
return this.artist + ": shapes=" + this.shapes.toString();

Drawing Program Code

import
import
import
import

import

import
import

public

acm.program. *;
acm.graphics.x;
javax.swing.x*;
java.util.x*;

java.awt.Color;

java.awt.event.x;
acm.util.*;

class MyDrawingProgramSoln2 extends GraphicsProgram implements MyDrawingProgramConstants {

private JTextField nameField = new JTextField(15);

private int currShapeType = CIRCLE;

private HashMap<String, Drawing> drawings = new HashMap<>();
private Drawing currDrawing;

public void init() {

}

add(new JLabel("Your Drawing"), NORTH);
add(new JLabel("Name"), WEST);
add(nameField, WEST);

add(new JButton('Change Name"), WEST);
add (new JButton("Circle"), SOUTH);
add(new JButton("Rectangle"), SOUTH);
addActionListeners();

public void actionPerformed(ActionEvent e) {

if(e.getActionCommand().equals("Circle")){
currShapeType = CIRCLE;

} else if (e.getActionCommand().equals("Rectangle")){
currShapeType = RECTANGLE;

} else if(e.getActionCommand().equals("Change Name")) {
String name = nameField.getText();
removeAll();

if(drawings.containsKey(name)) {
currDrawing = drawings.get(name);
for(int i = @; i < currDrawing.numShapes(); i ++) {
add(currDrawing.getShapeAt(i));

}
} else {
currDrawing = new Drawing(name);

public void mouseClicked(MouseEvent e) {
int mouseX = e.getX();
int mouseY = e.getY();

if(currShapeType == CIRCLE) {
GOval newCircle = randomColoredCircle();
add(newCircle, mouseX, mouseY);
if(currDrawing !'= null) {
currDrawing.addShape(newCircle);
drawings.put(nameField.getText(), currDrawing);

} else if (currShapeType == RECTANGLE) {
GRect newRect = randomColoredRect();
add(newRect, mouseX, mouseY);
if(currDrawing != null) {
currDrawing.addShape(newRect);
drawings.put(nameField.getText(), currDrawing);

/* The below code is given for you. */

private Color getRandomColor() {
RandomGenerator rg = new RandomGenerator();
return rg.nextColor();

private GOval randomColoredCircle() {
GOval newCircle = new GOval(CIRCLE_WIDTH, CIRCLE_WIDTH);
newCircle.setFilled(true);
newCircle.setColor(getRandomColor());
return newCircle;

private GRect randomColoredRect() {
GRect newRect = new GRect(RECTANGLE WIDTH, RECTANGLE_WIDTH);
newRect.setFilled(true);
newRect.setColor(getRandomColor());
return newRect;

} 51

Plan for Today

Review: Classes

Interacting with Interactors
JLabels, JTextFields, JButtons
Example: MadlLibs

Example: MyDrawingProgram

52

