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Announcements

● Blank lecture code on website
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Learning Goals for Today

1. Write a program that can make internet requests

2. Write a program that can respond to internet requests
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Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling
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Review: Interactors
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JComponent

JButton JLabel JTextField



Review: Interactors

Interactors can be placed in 5 regions on the screen.

● The center is usually where things happen!
○ The ConsoleProgram adds the Console there.
○ The GraphicsProgram add the Canvas there.

● We only see the other regions of the screen if we add 
interactors there using add(component, REGION)

● Interactors are automatically centered in their region. 7



Review: Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

add(textField, WEST);

addActionListeners();

}

} 8

In order to detect 
actions in these fields, 
we must
addActionListeners()



Review: actionPerformed
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public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){

println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){

println(“Button 2 was pressed”);

}

}



Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling
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https://www.information-age.com/year-internet-critical-things-123465491/

https://www.information-age.com/year-internet-critical-things-123465491/


Programs and the Internet

12

How does your phone 
communicate with 

Facebook?



Programs and the Internet

The Java program on your 
phone talks to the Java 
program at Facebook.
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14* Android phones run Java. So do Facebook servers.

Facebook Server
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Facebook Server

lcruzalb@stanford.edu

Is this login legit?
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Facebook Server

lcruzalb@stanford.edu

Is this login legit?

Confirmed. 
lcruzalb@stanford.edu 
is now logged in.

mailto:lcruzalb@stanford.edu
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Facebook Server

lcruzalb@stanford.edu

Send me the full name for 
lcruzalb@stanford.edu
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Facebook Server

lcruzalb@stanford.edu

Send me the full name for 
lcruzalb@stanford.edu

“Laura Cruz-Albrecht”

Laura Cruz-Albrecht



19

Facebook Server

lcruzalb@stanford.edu

Send me the cover photo 
for lcruzalb@stanford.edu

Laura Cruz-Albrecht
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Facebook Server

lcruzalb@stanford.edu

Send me the cover photo 
for lcruzalb@stanford.edu

where did I put 
that picture...

Laura Cruz-Albrecht
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Facebook Server

lcruzalb@stanford.edu

Send me the cover photo 
for lcruzalb@stanford.edu

Laura Cruz-Albrecht



Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling
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There are two types 
of internet programs: 
servers and clients.

23



Clients send requests to 
servers. Servers respond 
to those requests.
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25

Facebook Server

The internet is just a bunch of computers yelling at each other.

Your phone/computer

“Client” “Server”
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Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”
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Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client”

Get status of 
lcruzalb@stanford.edu

“Request”

“Server”
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Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”

Get status of 
lcruzalb@stanford.edu

“Request”
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Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”

Get status of 
lcruzalb@stanford.edu

“biking”

“Request”

“Response”



30

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Each yell is a specially formatted String.

Your phone/computer

“Client” “Server”

Get status of 
lcruzalb@stanford.edu

“biking”

“Request”

“Response”



There are two types 
of internet programs: 
servers and clients.
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Servers are Computer Programs
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Facebook Server

=



The Internet
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You

Facebook’s closest 
datacenter



The Internet
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The Internet
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Get status for 
lcruzalb@stanford.edu



The Internet
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The Internet
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The Internet
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The Internet
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biking



The Internet
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The Internet
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Status for 
lcruzalb@stanford.edu? 

biking!

mailto:lcruzalb@stanford.edu


A Server’s Simple Purpose
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Facebook ServersomeRequest

Request

serverResponse

Response



What is a Request?

/* Request has a command */

String command;

/* Request has parameters */

HashMap<String, String> params;
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Request request



What is a Request?

/* Request has a command */

String command;

/* Request has parameters */

HashMap<String, String> params;
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Request request

// Methods that the server calls on Request objects

request.getCommand();

request.getParam(key);   // returns associated value in map



Requests are like Remote Method Calls

Server 45

getStatus addFriend

Server has a bunch of 
things it can do.



Requests are like Remote Method Calls

Server 46

getStatus addFriend

What do you want 
me to do?



Requests are like Remote Method Calls

Server 47

getStatus addFriend

I have a command!

What do you want 
me to do?

command: “getStatus”
params: { “userName” : “duke” }



Requests are like Remote Method Calls

Server 48

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I have a command!

What do you want 
me to do?



Requests are like Remote Method Calls

Server 49

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }



Requests are like Remote Method Calls

Server 50

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I need a parameter: 
whose status?



Requests are like Remote Method Calls

Server 51

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I need a parameter: 
whose status?

I have a parameter!



Requests are like Remote Method Calls

Server 52

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }



Requests are like Remote Method Calls

Server 53

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

“making Java”



Servers on one slide
public String requestMade(Request request) { 

// server code goes here 

} 

// make a Server object 

private SimpleServer server = new SimpleServer(this, 8000); 

public void run(){ 

// start the server 

server.start(); 

}

54

1

2

3



requestMade

public String requestMade(Request request) { 

String cmd = request.getCommand();  // “getStatus”

if(cmd.equals(“getStatus”)) { 

String user = request.getParam(“userName”); // “duke”

String status = runGetStatus(user);         // “making Java”

return status;

} 

... 

} 55

Request request

command: “getStatus”
params: { “userName” : “duke” }



Servers on one slide
public String requestMade(Request request) { 

// server code goes here 

} 

// make a Server object 

private SimpleServer server = new SimpleServer(this, 8000); 

public void run(){ 

// start the server 

server.start(); 

}
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Servers on one slide
public String requestMade(Request request) { 

// server code goes here 

} 

// make a Server object 

private SimpleServer server = new SimpleServer(this, 8000); 

public void run(){ 

// start the server 

server.start(); 

}
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This is a port



What is a Port?
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Servers on one slide
public String requestMade(Request request) { 

// server code goes here 

} 

// make a Server object 

private SimpleServer server = new SimpleServer(this, 8000); 

public void run(){ 

// start the server 

server.start(); 

}

59

1

2

3



Echo Server

60



Echo Server
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There are two types 
of internet programs: 
servers and clients.
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There are two types 
of internet programs: 
servers and clients.
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Clients
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client another client



Clients

65

client another client

1. Interact with the user

2. Get data from its server

3. Save data to its server



Clients on one slide
try { 

// 1. construct a new request 

Request request = new Request("getStatus"); 

// 2. add parameters to the request 

request.addParam("name", "duke"); 

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

 

} catch(IOException e) { 

// The internet is a wild place

}
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Clients on one slide
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Clients on one slide
try { 

// 1. construct a new request 

Request request = new Request("getStatus"); 

// 2. add parameters to the request 

request.addParam("name", "duke"); 

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

 

} catch(IOException e) { 

// The internet is a wild place

}
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There are two types 
of internet programs: 
servers and clients.
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Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling
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Polling
Let’s write a program that lets users answer questions over the internet!

It will involve:
● 1 server: keeps track of the votes
● Multiple clients: anyone who wants to vote
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Polling
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0 0 0 0

A B C D

Clients Server



Polling
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0 0 0 0

A B C D
“I vote B”

Clients Server



Polling
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0 1 0 0

A B C D
“I vote B”

Clients Server



Polling
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0 1 0 0

A B C D
“I vote B”

“B received”

Clients Server
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0 1 0 0

A B C D

Clients Server

“I vote C”

Polling
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0 1 1 0

A B C D

Clients Server

“I vote C”

Polling
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0 1 1 0

A B C D

Clients Server

“I vote C”

“C received”

Polling
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0 1 1 0

A B C D

Clients Server

“I vote B”

Polling
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0 2 1 0

A B C D

Clients Server

“I vote B”

Polling
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0 2 1 0

A B C D

Clients Server

“I vote B”

“B received”

Polling
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0 2 1 0

A B C D

Clients Server

Polling



85

0 2 1 0

A B C D

Clients Server

Polling



Let’s Code It!
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Polling
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Polling
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Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

Next Time: How to start your own Java project
90


