
Internet Applications

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 24

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor, & others.

Announcements

● Blank lecture code on website

2

Learning Goals for Today

1. Write a program that can make internet requests

2. Write a program that can respond to internet requests

3

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

4

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

5

Review: Interactors

6

JComponent

JButton JLabel JTextField

Review: Interactors

Interactors can be placed in 5 regions on the screen.

● The center is usually where things happen!
○ The ConsoleProgram adds the Console there.
○ The GraphicsProgram add the Canvas there.

● We only see the other regions of the screen if we add
interactors there using add(component, REGION)

● Interactors are automatically centered in their region. 7

Review: Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

add(textField, WEST);

addActionListeners();

}

} 8

In order to detect
actions in these fields,
we must
addActionListeners()

Review: actionPerformed

9

public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){

println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){

println(“Button 2 was pressed”);

}

}

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

10

11
https://www.information-age.com/year-internet-critical-things-123465491/

https://www.information-age.com/year-internet-critical-things-123465491/

Programs and the Internet

12

How does your phone
communicate with

Facebook?

Programs and the Internet

The Java program on your
phone talks to the Java
program at Facebook.

13

14* Android phones run Java. So do Facebook servers.

Facebook Server

15

Facebook Server

lcruzalb@stanford.edu

Is this login legit?

16

Facebook Server

lcruzalb@stanford.edu

Is this login legit?

Confirmed.
lcruzalb@stanford.edu
is now logged in.

mailto:lcruzalb@stanford.edu

17

Facebook Server

lcruzalb@stanford.edu

Send me the full name for
lcruzalb@stanford.edu

18

Facebook Server

lcruzalb@stanford.edu

Send me the full name for
lcruzalb@stanford.edu

“Laura Cruz-Albrecht”

Laura Cruz-Albrecht

19

Facebook Server

lcruzalb@stanford.edu

Send me the cover photo
for lcruzalb@stanford.edu

Laura Cruz-Albrecht

20

Facebook Server

lcruzalb@stanford.edu

Send me the cover photo
for lcruzalb@stanford.edu

where did I put
that picture...

Laura Cruz-Albrecht

21

Facebook Server

lcruzalb@stanford.edu

Send me the cover photo
for lcruzalb@stanford.edu

Laura Cruz-Albrecht

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

22

There are two types
of internet programs:
servers and clients.

23

Clients send requests to
servers. Servers respond
to those requests.

24

25

Facebook Server

The internet is just a bunch of computers yelling at each other.

Your phone/computer

“Client” “Server”

26

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”

27

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client”

Get status of
lcruzalb@stanford.edu

“Request”

“Server”

28

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”

Get status of
lcruzalb@stanford.edu

“Request”

29

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Your phone/computer

“Client” “Server”

Get status of
lcruzalb@stanford.edu

“biking”

“Request”

“Response”

30

Facebook Server

The internet is just a bunch of computers yelling at each other.

The computers that yell first are clients, and the computers that yell back are servers.

Each yell is a specially formatted String.

Your phone/computer

“Client” “Server”

Get status of
lcruzalb@stanford.edu

“biking”

“Request”

“Response”

There are two types
of internet programs:
servers and clients.

31

Servers are Computer Programs

32

Facebook Server

=

The Internet

33

You

Facebook’s closest
datacenter

The Internet

34

The Internet

35

Get status for
lcruzalb@stanford.edu

The Internet

36

The Internet

37

The Internet

38

The Internet

39

biking

The Internet

40

The Internet

41

Status for
lcruzalb@stanford.edu?

biking!

mailto:lcruzalb@stanford.edu

A Server’s Simple Purpose

42

Facebook ServersomeRequest

Request

serverResponse

Response

What is a Request?

/* Request has a command */

String command;

/* Request has parameters */

HashMap<String, String> params;

43

Request request

What is a Request?

/* Request has a command */

String command;

/* Request has parameters */

HashMap<String, String> params;

44

Request request

// Methods that the server calls on Request objects

request.getCommand();

request.getParam(key); // returns associated value in map

Requests are like Remote Method Calls

Server 45

getStatus addFriend

Server has a bunch of
things it can do.

Requests are like Remote Method Calls

Server 46

getStatus addFriend

What do you want
me to do?

Requests are like Remote Method Calls

Server 47

getStatus addFriend

I have a command!

What do you want
me to do?

command: “getStatus”
params: { “userName” : “duke” }

Requests are like Remote Method Calls

Server 48

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I have a command!

What do you want
me to do?

Requests are like Remote Method Calls

Server 49

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

Requests are like Remote Method Calls

Server 50

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I need a parameter:
whose status?

Requests are like Remote Method Calls

Server 51

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

I need a parameter:
whose status?

I have a parameter!

Requests are like Remote Method Calls

Server 52

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

Requests are like Remote Method Calls

Server 53

getStatus addFriend

command: “getStatus”
params: { “userName” : “duke” }

“making Java”

Servers on one slide
public String requestMade(Request request) {

// server code goes here

}

// make a Server object

private SimpleServer server = new SimpleServer(this, 8000);

public void run(){

// start the server

server.start();

}

54

1

2

3

requestMade

public String requestMade(Request request) {

String cmd = request.getCommand(); // “getStatus”

if(cmd.equals(“getStatus”)) {

String user = request.getParam(“userName”); // “duke”

String status = runGetStatus(user); // “making Java”

return status;

}

...

} 55

Request request

command: “getStatus”
params: { “userName” : “duke” }

Servers on one slide
public String requestMade(Request request) {

// server code goes here

}

// make a Server object

private SimpleServer server = new SimpleServer(this, 8000);

public void run(){

// start the server

server.start();

}

56

1

2

3

Servers on one slide
public String requestMade(Request request) {

// server code goes here

}

// make a Server object

private SimpleServer server = new SimpleServer(this, 8000);

public void run(){

// start the server

server.start();

}

57

1

2

3

This is a port

What is a Port?

58

39 35
33

29
23
17

9
3

45

Servers on one slide
public String requestMade(Request request) {

// server code goes here

}

// make a Server object

private SimpleServer server = new SimpleServer(this, 8000);

public void run(){

// start the server

server.start();

}

59

1

2

3

Echo Server

60

Echo Server

61

There are two types
of internet programs:
servers and clients.

62

There are two types
of internet programs:
servers and clients.

63

Clients

64

client another client

Clients

65

client another client

1. Interact with the user

2. Get data from its server

3. Save data to its server

Clients on one slide
try {

// 1. construct a new request

Request request = new Request("getStatus");

// 2. add parameters to the request

request.addParam("name", "duke");

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

} catch(IOException e) {

// The internet is a wild place

}

66

Clients on one slide
try {

// 1. construct a new request

Request request = new Request("getStatus");

// 2. add parameters to the request

request.addParam("name", "duke");

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

} catch(IOException e) {

// The internet is a wild place

}

67

Clients on one slide
try {

// 1. construct a new request

Request request = new Request("getStatus");

// 2. add parameters to the request

request.addParam("name", "duke");

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

} catch(IOException e) {

// The internet is a wild place

}

68

Clients on one slide
try {

// 1. construct a new request

Request request = new Request("getStatus");

// 2. add parameters to the request

request.addParam("name", "duke");

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

} catch(IOException e) {

// The internet is a wild place

}

69

Clients on one slide
try {

// 1. construct a new request

Request request = new Request("getStatus");

// 2. add parameters to the request

request.addParam("name", "duke");

// 3. send the request to a computer on the internet

String result = SimpleClient.makeRequest(HOST, request);

} catch(IOException e) {

// The internet is a wild place

}

70

There are two types
of internet programs:
servers and clients.

71

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

72

Polling
Let’s write a program that lets users answer questions over the internet!

It will involve:
● 1 server: keeps track of the votes
● Multiple clients: anyone who wants to vote

73

Polling

74

0 0 0 0

A B C D

Clients Server

Polling

75

0 0 0 0

A B C D
“I vote B”

Clients Server

Polling

76

0 1 0 0

A B C D
“I vote B”

Clients Server

Polling

77

0 1 0 0

A B C D
“I vote B”

“B received”

Clients Server

78

0 1 0 0

A B C D

Clients Server

“I vote C”

Polling

79

0 1 1 0

A B C D

Clients Server

“I vote C”

Polling

80

0 1 1 0

A B C D

Clients Server

“I vote C”

“C received”

Polling

81

0 1 1 0

A B C D

Clients Server

“I vote B”

Polling

82

0 2 1 0

A B C D

Clients Server

“I vote B”

Polling

83

0 2 1 0

A B C D

Clients Server

“I vote B”

“B received”

Polling

84

0 2 1 0

A B C D

Clients Server

Polling

85

0 2 1 0

A B C D

Clients Server

Polling

Let’s Code It!

86

Polling

88

Polling

89

Plan for Today

● Review: Interactors
● Internet 101
● Servers & Clients
● Practice: Polling

Next Time: How to start your own Java project
90

