
How to Start Your Own Java Programs

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 25

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor, & others.

Announcements

● Download blank starter code from the website!

2

Learning Goals for Today

Learn About Writing Java code in the Real World!

3

Plan for Today

● Review: Server & Client
● “Real” Java
● Console Program
● Basic Gui
● Creating Our Own Project!
● Example: Reading HTML with JSoup

4

There are two types
of internet programs:
servers and clients.

5

Clients send requests to
servers. Servers respond
to those requests.

6

7

Facebook Server

lcruzalb@stanford.edu

Send me the full name for
lcruzalb@stanford.edu

“Laura Cruz-Albrecht”

Laura Cruz-Albrecht

URL

In PollClient, change the HOST constant to:

 http://cbc0026a.ngrok.io

8

Real Java?

9

Does this mean we didn’t
learn REAL Java?

Of Course We Did!

While we did use some Stanford specific
Java libraries at times, you did learn
REAL Java!

All of the data structures, primitives,
classes, loops, etc are all part of real
programming and real Java!

10

Phew, that’s
good.

ACM Libraries

All quarter, we have used the Java ACM Libraries.

● Karel, ConsoleProgram, RandomGenerator…
● GraphicsProgram, GOval, GRect, GImage...

11

I can’t...Can you imagine
Java without me?!

ACM Libraries

Today, we’ll look at how standard Java programs are
written!

12

Can’t wait! 😊Sounds fun!

Hello World with ACM
This was the first ConsoleProgram we ever wrote! Notice:

● it imports acm.program.*
● it extends a ConsoleProgram
● It uses public void run()
● It uses println()

13

import acm.program.*;

public class HelloWorld extends ConsoleProgram {

 public void run() {

 println(“Hello, world!”);

 }

}

Standard Hello World
This is Hello World in Standard Java! Notice:

● no imports or extends needed for this program!
● It uses public static void main(String[] args)
● It uses System.out.println()

14

public class HelloWorld{

 public static void main(String[] args) {

 System.out.println(“Hello, world!”);

 }

}

main
Why public static void main(String[] args)?

main is the true entry point for a program in Java.

● It must be written exactly as seen above!
● String[] args is an array of String arguments given to

the program.

15

main
Why public static void main(String[] args)?

main is the true entry point for a program in Java.

● It must be written exactly as seen above!
● String[] args is an array of String arguments given to

the program.

System.out.println() is the true println()

Standard Java methods are static unless part of a class
of objects.

16

Why did we use ConsoleProgram?
Creates a new window.

Puts a new scrollable area in the window.

Provides print and println commands to send text output
to the window.

Contains a main method that calls your run method.

17

Why did we use ConsoleProgram?

18

Standard Java Version

19

Reading Input with ACM
This is a short program that read in input! Notice:

● It uses readLine and readInt to read input

20

import acm.program.*;

public class SayingHello extends ConsoleProgram {

 public void run() {

 String name = readLine(“What’s your name?”);

 int age = readInt(“How old are you?”);

 println(“Hello” + name + “!”);

 println(name + “ is “ + age + “ years old.”);

}

}

Reading Input with Standard Java
This is another short program that read in input!

21

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

Reading Input with Standard Java
This is another short program that read in input!

22

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

We have to
create a Scanner
to read input!

Reading Input with Standard Java
This is another short program that read in input!

23

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

System.in is
another name for
the console here.

Reading Input with Standard Java
This is another short program that read in input!

24

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

We have to print out
the question using:
System.out.println

Reading Input with Standard Java
This is another short program that read in input!

25

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

We read in the input
using:
console.readLine()

Reading Input with Standard Java
This is another short program that read in input!

26

import java.util.Scanner;

public class SayingHello{

 public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println(“What’s your name?”);

 String name = console.nextLine();

 System.out.println(“What’s your name?”);

 int age = console.nextInt();

 System.out.println(“Hello” + name + “!”);

 System.out.println(name + “ is “ + age + “ years old.”);

}

}

GraphicsPrograms?
Creates a new window.

Creates a drawing canvas in the center of the window.

Provides convenient methods to detect Mouse Events.

Contains a main method that calls your run method.

27

Basic GUI with ACM

28

public class ColorFun extends Program {

 public void init() {

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 add(redButton, SOUTH);

 add(blueButton, SOUTH);

 addActionListeners();

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 setBackground(Color.BLUE);

 } else {

 setBackground(Color.RED);

 }

}

}

Basic GUI with Standard Java

29

public class ColorFun implements ActionListener {

public static void main(String[] args) {

new ColorFun().init();

}

private JFrame frame;

public void init() {

 frame = new JFrame(“ColorFun”);

 frame.setSize(500, 300);

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 redButton.addActionListener(this);

 blueButton.addActionListener(this);

 frame.add(redButton, “South”);

 frame.add(blueButton, “North”);

 frame.setVisible(true);

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 frame.setBackground(Color.BLUE);

 } else {

 frame.setBackground(Color.RED);

 }

}

 }

Basic GUI with Standard Java

30

public class ColorFun implements ActionListener {

public static void main(String[] args) {

new ColorFun().init();

}

private JFrame frame;

public void init() {

 frame = new JFrame(“ColorFun”);

 frame.setSize(500, 300);

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 redButton.addActionListener(this);

 blueButton.addActionListener(this);

 frame.add(redButton, “South”);

 frame.add(blueButton, “North”);

 frame.setVisible(true);

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 frame.setBackground(Color.BLUE);

 } else {

 frame.setBackground(Color.RED);

 }

}

 }

Basic GUI with Standard Java

31

public class ColorFun implements ActionListener {

public static void main(String[] args) {

new ColorFun().init();

}

private JFrame frame;

public void init() {

 frame = new JFrame(“ColorFun”);

 frame.setSize(500, 300);

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 redButton.addActionListener(this);

 blueButton.addActionListener(this);

 frame.add(redButton, “South”);

 frame.add(blueButton, “North”);

 frame.setVisible(true);

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 frame.setBackground(Color.BLUE);

 } else {

 frame.setBackground(Color.RED);

 }

}

 }

Basic GUI with Standard Java

32

public class ColorFun implements ActionListener {

public static void main(String[] args) {

new ColorFun().init();

}

private JFrame frame;

public void init() {

 frame = new JFrame(“ColorFun”);

 frame.setSize(500, 300);

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 redButton.addActionListener(this);

 blueButton.addActionListener(this);

 frame.add(redButton, “South”);

 frame.add(blueButton, “North”);

 frame.setVisible(true);

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 frame.setBackground(Color.BLUE);

 } else {

 frame.setBackground(Color.RED);

 }

}

 }

Basic GUI with Standard Java

33

public class ColorFun implements ActionListener {

public static void main(String[] args) {

new ColorFun().init();

}

private JFrame frame;

public void init() {

 frame = new JFrame(“ColorFun”);

 frame.setSize(500, 300);

 JButton redButton = new JButton(“Red!”);

 JButton blueButton = new JButton(“Blue!”);

 redButton.addActionListener(this);

 blueButton.addActionListener(this);

 frame.add(redButton, “South”);

 frame.add(blueButton, “North”);

 frame.setVisible(true);

}

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand().equals(“Blue!”){

 frame.setBackground(Color.BLUE);

 } else {

 frame.setBackground(Color.RED);

 }

}

 }

Basic GUI with Standard Java
We had to create a frame.

Adding actionListeners was a lot more involved!

34

Why Not Libraries?

35

Why don’t we just use
ACM all the time then?

Basic GUI with ACM
● Benefits of libraries:

○ simplify syntax/rough edges of language/API
○ avoid re-writing the same code over and over
○ possible to make advanced programs quickly
○ leverage work of others

36

Yay! ❤

Basic GUI with ACM
● Benefits of libraries:

○ simplify syntax/rough edges of language/API
○ avoid re-writing the same code over and over
○ possible to make advanced programs quickly
○ leverage work of others

● Drawbacks of libraries:
○ limitations on usage; e.g. ACM library cannot

be distributed for commercial purposes.

37

Oh. 😔

Creating Our Own Java Project
What other sorts of cool Java libraries are out there?

How do we create our own Java projects using them?

38

Reading from the Web
We’re going to write a program that will grab HTML from a
webpage from the internet and print out important
information from that page!

Before we pick the webpage, let’s set up our new Java
Project!

39

Let’s Create an Empty Project First!
To create an empty project on your own, you don’t need
the starter code!

You will need the starter code for some of the cool code
we’ll use to read the HTML from our web page.

40

Let’s Create an Empty Project First!
In your Eclipse menu, click on:

File -> New -> Java Project

41

Let’s Create an Empty Project First!
Give your project a name:

Click Finish:

42

Let’s Create an Empty Project First!
Eclipse will ask if you want to create a module.

Click Don’t Create:

43

Let’s Create a lib Folder
In your Eclipse menu, click on:

File -> New -> Folder

44

Let’s Create a lib Folder
Select your
ReadingFromTheWeb
project folder.

Create a lib folder to
hold any .JAR files we
may want!

Press Finish when done!

45

Let’s Get a .JAR
We’re going to use the
jsoup library to process
HTML in a webpage. Let’s
go get it!

If you search “jsoup”
online, you should find it!
Click on Download.

46

Let’s Get a .JAR
After you’ve clicked Download, you will see some links.

Click on jsoup-1.12.1.jar to download the .JAR file that
contains jsoup!

47

Let’s Get a .JAR
Let’s put the .JAR file we just downloaded into our lib folder we
just created!

We can drag it into our folder using Finder or Windows Explorer!

48

Step 1: Open your Folder Step 2: Open lib Step 3: Drag the .jar
file into lib

Refresh Our Project
Now, we can return to Eclipse and refresh our project!

Secondary click (two-finger or right click) on the project name
and press Refresh.

49

There’s your .jar file!

Configuring Our Build Path
Even though we’ve added our .jar to our folder, we need to
add the .jar to our Build Path.

Let’s Configure Build Path...

50

Configuring Our Build Path
Click:

● Libraries
● Classpath
● Add JARs...

51

Configuring Our Build Path
Select our jsoup jar and click OK. Then, you can press Apply
and Close.

52

Creating Our Program Class
Now, we create our
JSoupExample class so we can
start coding!

We create this the same way
we created a new project and
a new folder!

53

Starter Code
While you could this program from Scratch there is a good
starting point in the Starter Code.

You can code this portion in the Starter Code, or copy-paste
JSoupExample from the Starter Code into your file!

54

Documentation/API
Using the Documentation from the JSoup website, we can
create a program that will:

● Get HTML from an explore courses page about CS classes
● Print out all of the course titles for CS classes

Links to relevant documentation:

https://jsoup.org/cookbook/extracting-data/attributes-text-html

https://jsoup.org/cookbook/extracting-data/selector-syntax
55

https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&catalog=&academicYear=&q=CS&collapse=
https://jsoup.org/cookbook/extracting-data/attributes-text-html
https://jsoup.org/cookbook/extracting-data/selector-syntax

Let’s Code It!

56

Plan for Today

● Review: Server & Client
● “Real” Java
● Console Program
● Basic Gui
● Creating Our Own Project!
● Example: Reading HTML with JSoup

Next Time: Life After 106A
57

