
Final Exam Review 1
CS106A, Summer 2019
Ryan Cao && Peter Hansel
Slides mostly from Sarai Gould && Laura Cruz-Albrecht

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

2

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

3

Final Logistics
● When and where?

○ Saturday August 17th, 8:30-11:30AM
○ Bishop Auditorium

● Bluebook
○ Download from CS106A website
○ Try it out before the exam (practice finals available)

● What to bring
○ Laptop and charger
○ 2 double-sided 8.5” x 11” sheets of physical notes (no notes on your

laptop)
○ Your two-step authentication device (probably your phone)
○ Make sure you download the encrypted final onto Bluebook before

the exam! 4

Final Logistics

Important info (logistics, practice exams, and sample syntax
reference sheet, etc) can be found at:

http://web.stanford.edu/class/cs106a/exams/final.html

5

Linked on left sidebar
of class website

http://web.stanford.edu/class/cs106a/exams/final.html

Final Logistics
● Is the final exam cumulative?
● What will be tested on the final exam?

6

Final Logistics
● Is the final exam cumulative?
● What will be tested on the final exam?
● What about all this stuff you aren’t covering today?

○ Expressions and Variables
○ Java Control Statements
○ Console Programs
○ Methods, parameters, returns
○ Randomness
○ Strings and chars
○ Scanners and file processing
○ Memory

7

Midterm Review: Friday of week 4.

Final Logistics
● Is the final exam cumulative?
● What will be tested on the final exam?
● What about all this stuff you aren’t covering today?

○ Expressions and Variables
○ Java Control Statements
○ Console Programs
○ Methods, parameters, returns
○ Randomness
○ Strings and chars
○ Scanners and file processing
○ Memory

● How can I practice for the final?

8

Midterm Review: Friday of week 4.

Practicing for the Final

● Review concepts you’re unsure of
● Review programs we wrote in lecture
● Do section problems
● Do practice final under real conditions

○ Don’t look at the answer key unless you’ve given it a good go first :)
● https://www.codestepbystep.com/

9

https://www.codestepbystep.com/

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

10

Learning Goals

“After this lecture, I want you to be able to...”

● Lectures 1-3 (Karel): Apply programmatic thinking and
decomposition to logical tasks

● Lecture 4 (Intro to Java): Create variables of primitive types,
perform console I/O, and evaluate expressions using primitive
types

● Lecture 5 (Booleans and Control Flow): Use loops to perform
repeated tasks, use conditions to decide which tasks to perform

11

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 6 (Methods, Parameters, and Scope): Identify a
variable’s scope, and write functions that pass parameters and
leverage return values to overcome the limitation of scope in
program decomposition.

● Lecture 7 (Nested For Loops & Intro to Graphics): Learn how to
use nested loops and create simple graphics.

12

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 8 (More Methods & Graphics): Write programs using five
types of graphical objects (rectangles, ovals, lines, labels, and
images), call methods on Objects

● Lecture 9 (Animation & Randomness): Use loops and pausing to
animate graphical programs, and understand how to use a
RandomGenerator

● Lecture 10 (Mouse Events & Instance Variables): Write programs
that respond to mouse events, identify when it is appropriate to
use instance variables

13

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 11 (Methods and Scope with Tracing and Debugging):
Understand how to trace through a Java program, use the
Java debugger

● Lecture 12 (Memory): Recall that primitives are passed by value
while Objects are passed by reference in Java, apply that
knowledge to know which variables’ values change when they
are modified in other methods

14

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 13 (Characters and Strings): recall that Java
understands chars as ASCII values (ints from 0 - 255), create
String variables, recall that Strings are immutable

● Lecture 14 (String Processing): Identify situations where common
String methods like length and substring are useful, solve
problems that involve manipulating Strings (often through
creating new Strings)

● Lecture 15 (File Reading): Write programs that use files as
sources of input data

15

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 16 (Arrays): Describe the purpose of data structures in
programming, know how to store data in and retrieve data
from arrays

● Lecture 17 (2D Arrays): Recognize 2D arrays as grids or arrays of
arrays, apply nested for loops to work with 2D arrays, process
images as 2D arrays of pixels

● Lecture 18 (ArrayLists): Know how to store data in and retrieve
data from ArrayLists

16

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 19 (HashMaps): Know how to store data in and retrieve
data from HashMaps

● Lecture 20 (DataStructures: Bringing it all Together): Write
programs that leverage different data structures, and identify
the most appropriate data structure between arrays, ArrayLists,
and HashMaps for different storage needs.

● Lecture 21-22 (Classes): Learn how to design and use Java
classes. Understand that classes define a new variable type.

17

Learning Goals

“After this lecture, I want you to be able to...”

● Lecture 23 (Interactors): Know how to use Java’s interactive
components.

● Lecture 24 (Internet Applications): Understand the two types of
Internet programs - servers and clients - and how they interact.

● Lecture 25 (How to Start your own Java Program): How to start
your own Java program and leverage jar files.

● Lecture 26 (Life After CS106A): Identify next learning steps, and
see real-world applications where computer science can help.

18

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

19

Graphics

● Look at lecture slides for lists of different GObject types and their
methods.

● Remember: the x and y of GRect, GImage, GOval, etc. is their
upper-left corner; and the x and y of GLabel is the lower-left
baseline corner.

20

Events

● Two ways for Java to run your code: from run() and from event
handlers (mouseClicked, mouseMoved, actionPerformed, etc.)

● Event handlers must have exactly the specified signature;
otherwise they won’t work!

e.g., public void mouseClicked(MouseEvent e)

● If you need access to a variable in an event handler that you
use elsewhere in your code, it should be an instance variable
(e.g., paddle in Breakout)

21

Live Demo: Simple Circles Program
● A simple graphics program! Has three buttons -- adding a Circle,

editing (i.e. moving around) a clicked Circle, and deleting a clicked
circle.

● Circles must have a random fill color, a radius between MIN_RADIUS
and MAX_RADIUS, and be centered at the point of the mouse click.

● When Circles are dragged in Edit mode, they must follow the mouse
exactly as they were clicked.

22

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

23

First - Data Structures

Data Structures allow us to store more data in more
interesting ways. We’ve seen several:

● Arrays
● 2D Arrays
● ArrayLists
● Hashmaps

Let’s first talk about arrays!

24

Arrays

● An array is a fixed-length list of a single type of thing.
● An array can store primitives and Objects.
● You cannot call methods on arrays, e.g., no myArray.contains()

25

26

Arrays

2 3 4 5 6 7
0 1 2 3 4 5

● Each location is assigned an index, going from 0 to length-1.
● The type of data at each index depends on the type of array!

int arrayLen = myArray.length; // 6
int last = myArray[arrayLen - 1]; // 7

int[] myArray = new int[5];
// OR
int[] myArray = {2, 3, 4, 5, 6, 7};

int arrayLen = myArray.length;

// Access elements with bracket notation
int first = myArray[0];
int last = myArray[arrayLen - 1];

// In arrays, we can change elements!
myArray[0] = 22;

27

Arrays

28

1D Array Practice
Write the method int longestSortedSequence(int[] array)

Sorted in this case means nondecreasing, so a sequence could
contain duplicates:

Link: https://www.codestepbystep.com/problem/view/java/arrays/longestSortedSequence

https://www.codestepbystep.com/problem/view/java/arrays/longestSortedSequence

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

29

2D Arrays

int[][] matrix = new int[3][4];

30

2

1

0
0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

An array of arrays A unit (ie, a grid/matrix)

Outer array: # rows

columns

Inner array: # cols

rows

2D Arrays

int[][] matrix = new int[3][4];

matrix[row][col]; // get element

matrix[row][col] = value; // set element

31

2D Arrays For Loops

● The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) {

for (int col = 0; col < numCols(arr); col++) {

// do something with

// arr[row][col] ...

}

} 32

2D Arrays For Loops

● The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) {

for (int col = 0; col < numCols(arr); col++) {

// do something with

// arr[row][col] ...

}

} 33

arr.length

arr[0].length

2D Arrays on 1 Slide
1. Make a 2D array

double[][] grid = new double[nRows][nCols];

2. Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;

println(“Upper left val is: ” + grid[0][0]);

3. Get the number of rows and columns of a 2D array (tip: define method)
int numRows = grid.length;

int numCols = grid[0].length;

4. Use a double for loop to iterate over the entire 2D array
for (int r = 0; r < grid.length; r++) {

for (int c = 0; c < grid[0].length; c++) {

// something with grid[r][c]

}

} 34

Live Demo: Sudoku Checker
● Sudoku is a game played on a 9 x 9 grid, in which the goal is to fill every row,

column, and sector with the numbers 1 through 9 exactly once.
● Our goal is, given a sudoku board as input, to output whether the solution

presented is valid or not.
● To do this, we will need to implement three separate methods --

checkRows(), checkCols(), and checkSector().

35

36

Review: images are
2D arrays of pixels.

Modifying Pixels
● Get 2D pixel array from an image

int[][] pixels = myGImage.getPixelArray();

● Extract pixel RGB colors with GImage.getRed/Blue/Green.
int red = GImage.getRed(pixels[0][0]); // 0-255

int green = GImage.getGreen(pixels[0][0]); // 0-255

int blue = GImage.getBlue(pixels[0][0]); // 0-255

● Modify the color components for a given pixel.
red = 0; // remove redness

● Combine the RGB values back together into a single int.
pixels[0][0] = GImage.createRGBPixel(red, green, blue);

● Update image with your modified pixels when finished.
image.setPixelArray(pixels); 37

Make Grayscale

38

Make Grayscale

39

Make Grayscale

40

Make Grayscale

41

Make Grayscale

42

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

43

ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

44

1

myArrayList

Can I join?
Yes!

0 1

2 3

2

ArrayLists

● An ArrayList is a flexible-length list of a single type of thing.
● An ArrayList can only store Objects.

○ For primitives, user wrapper classes; ie ArrayList<Integer> instead
of ArrayList<int> (Integer is a wrapper class for int)

● An ArrayList has a variety of methods you can use like
.contains, .get, .add, .remove, .size, etc

45

Arrays vs. ArrayLists
Operation

Make a new one

Length?

Get element?

Set element?

Loop?

46

Arrays

int arr = new int[5];

arr.length

arr[i]

arr[i] = value

for(int i = 0; i < arr.length; i++)

ArrayLists

ArrayList<String> list = new

ArrayList<String>();

list.size()

list.get(i)

list.set(i, value)

for(String value : list)

Arrays vs. ArrayLists
● Array

○ Fixed size
○ Efficient (not a concern in this class)
○ No methods, can only use myArray.length (no parentheses!)
○ Can store any object or primitive

● ArrayList
○ Expandable
○ Less efficient than Array (not a concern in this class)
○ Convenient methods like .add(), .remove(), .contains()
○ Cannot store primitives, so use their wrapper classes instead

47

deleteDuplicates
private void deleteDuplicates(ArrayList<String> list)

● Guaranteed that list is in sorted order

Before: {"be", "be", "is", "not", "or", "question", "that", "the", "to", "to"}
After: {“be”, “is”, “not”, “or”, “question”, “that”, “the”, “to”}

● Solution strategy:
○ Loop through ArrayList
○ Compare pairs of elements
○ If element.equals(nextElement), remove element from the list

48

deleteDuplicates
● Loop through ArrayList
● Compare pairs of elements
● If element.equals(nextElement), remove element from the list

49

deleteDuplicatesReverse
● Loop through ArrayList in reverse
● Compare pairs of elements
● If element.equals(previousElement), remove element from the list

50

Plan for Today

● Announcements / Exam Logistics
● Learning Goals
● Graphics & Events
● Arrays
● 2D Arrays
● ArrayLists

Next Time: Final Exam Review 2

51

Questions

Any questions? :D

52

