Final Exam Review 2

CST106A, Summer 2019
Trey Connelly && Aditya Chander
Slides mostly from Sarai Gould && Laura Cruz-Albrecht Eilg 38

Plan for Today

HashMaps
Classes
Inferactors
Closing Remarks

Plan for Today

e HashMaps

HashMaps

A variable type that represents a collection of key-value pairs

e You access values by key, and all keys are unique

e Keys and values can be any type of Object (use wrapper
classes to store primitives)

e Resizable - can add and remove pairs

e Has a variety of methods you can use, including
.containsKey, .put, .get, .keySet, efc.

HashMaps

Data Type of Ykeys” Data Type of “values” Repeated types of
in our HashMap in our HashMap key->value pairs

N /)

HashMap<String, String> firstMap = new HashMap<String, String>();

Qur First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

new HashMap<String, String>();

sounds
key value key value
“dog” “Woof” “cat” “meow”

~

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

new HashMap<String, String>();

String dogSound = sounds.get(“dog”);

println(dogSound);
println(sounds.get(“cat”));

woof
meow

sounds
key value key value
“dog” “Woof” “cat” “meow”

op

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

new HashMap<String, String>();

String dogSound = sounds.get(“dog”);

println(dogSound);
println(sounds.get(“cat”));
println(sounds.get(“hippopotamus”

)); // this isn’t in our map!

woof
meow

sounds
key value key value
“dog” “Woof” “cat” “meow”

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

new HashMap<String, String>();

String dogSound = sounds.get(“dog”);

println(dogSound);
println(sounds.get(“cat”));
println(sounds.get(“hippopotamus”

)); // this isn’t in our map!

woof
meow
null

sounds
key value key value
“dog” “Woof” “cat” “meow”

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);

// what does the fox say?*

println(dogSound);
println(sounds.get(“cat”));

new HashMap<String, String>(); woof

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

meow
null

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

* Music reference... Not just crazy.

Our Improved HashMap

import java.util.*;

HashMap<String, ArraylList<String>> animalSounds = new HashMap<>();
ArraylList<String> dogSounds = new ArraylList<>();
dogSounds.add(“woof”);

dogSounds.add(“bark™);

animalSounds.put(“dog”, dogSounds);

sounds

key value

ﬂ'dog)) _ (“‘WOO_F)), ('('bar,k)))

Our Improved HashMap Part 2

animalSounds.put(“cat”, catSounds); // (meow, hiss)

for(String animal : animalSounds.getKeySet()){
ArraylList<String> sounds = animalSounds.get(animal);

for(String sound : sounds){

woof
bark

meow

hiss

println(sound);
}
}
sounds
key value key value
“dog” — (“woof”, “bark”) “cat” — (“meow”, “hiss”)

Review: What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();
numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);
println(numLimbs.get(“dog”));
println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs
key value key value
“snail” —» 105 “octopus” — 8

Review: What Does This Code Do?

import java.util.*; I
HashMap<String, Integer> numLimbs = new HashMap<>(); null
numLimbs.put(“dog”, 4); 105
numLimbs.remove(“dog”);
numLimbs.put(“snail”, 1);
numLimbs.put(“snail”, 105);
numLimbs.put(“octopus”, 8);
println(numLimbs.get(“dog”));
println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs
key value key value
“snail” —» 105 “octopus” — 8

Review: HashMap Commands

HashMap<String, String> myMap = new HashMap<String, String>();

// Adds key->value pairs
myMap.put(“dog”, “woof”);
myMap.put(“cat”, “meow”);

// Removes key and the associated value
myMap . Pemove(“dog”, “'WOO.F))) ;

// A beautiful way to access each key

for (String key : myMap.keySet()) {
println(key);
// print the value associated with the key
println(myMap.get(key));

Review: Data Structures

Arrays ArrayLists
213/4|5|6 s

HashMaps
a)

ﬂ'dog)) (‘WOOF’,

key value

“Cat” (fmeOWJJ

Which Data Structure to Use@¢

e Use an array if...
o Order matters for your information
o You know how many elements you will store
o You need the most efficiency
e Use an Arraylist if...
o Order matters for your information
o You do not know how many elements you will store, or need to resize
o You need to use ArrayList methods

e Use a HashMap if...

Order doesn’'t matter for your information

You need to store an association between two types of information

You do not know how many elements you will store, or need to resize
You need to use HashMap methods 18

O O O O

Which data structure 1o use?¢

Data
structure
name

array/2D
array

ArrayList

HashMap

Ordered?

yes

yes

No

Fixed size?

yes

No

Nno

Value only or
key-value?

Value only

Value only

Key-value

Can store
primitives?

yes

no (objects
only)

no (objects
only)

Plan for Today

o Classes

. A class defines ©
2% new variable type.

Classes Are Like Blueprints

~

Hedgehog Class (blueprint

State: Has name
Has color
Has cuteness level
Behavior: Can eat
Can run*

Blueprin’rfor
Hedgehog

l Can curl up

~N

Hedgehog #1 (variable)

State: name = “Walnoot”
color = Brown
cuteness = 10 (Very cute)

Behavior: Can eat

Hedgehog #2 (variable)

State: name = “Nutmeg”
color = Snowflake
cuteness = 15 (VERY cute)

Hedgehog #3 (variable)

State: name = “Ruffles”
color = Beige
cuteness = 50 (speechless)

'
Behavior: Can eat Lamec., Behavior: Can eat o
Can run Can run] - Can run e
Can curlup Cancurlup %, i3~ Can curl up -

Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)
2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

23

Using Constructors

BankAccount dukeAccount = new BankAccount(‘“Duke”, 50);
BankAccount karelAccount = new BankAccount(“Karel”);

dukeAccount karelAccount
name = “Duke” name = “Karel”
balance = 50 balance = ©
BankAccount(name, bal) { BankAccount(name) {
this.name = name; this.name = name;
this.balance = bal; this.balance = 0;
} }

When you call a constructor (with new):
1. Java creates a new “instance” of that class

2. The constructor initializes the object’s state (instance variables)

3. The newly created object is returned to your program*

Review: BankAccount

public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: how to create a new BankAccount
public BankAccount(String name) {
this.name = name;
this.balance = 9;
}
// Step 3: the things a BankAccount can do
public void deposit(double amount) {
this.balance += amount;
}
public boolean withdraw(double amount) {
if (this.balance >= amount) {
this.balance -= amount;
return true;

}

return false;

} 25

Review: Getters & Setters

public class BankAccount {
private String name;
private double balance;

// “setter”
public void setName(String newName) {
if (newName.length() > 0) {
this.name = newName;

}
// “getters”

public String getName() {
return this.name;

}
public double getBalance() {

return this.balance;

GRect.java

public class GRect {
private double width;
public GRect(double width, double height) {

}

Unpacking GRect

GRect.java

public class GRect {

3 Ingredients:

GRect.

Jjava

public class GRect {

// 1. Instance variables

private
private
private
private
private
private

double width = 9;

double height = 0;

double yc = 0;
double xc = 0;

boolean isFilled =

boolean isVisible

false;
= false;

3 Ingredients:

1. Define the variables each
instance stores

GRect.java

bli 1 GRect . .
public class GRect { 3 Ingredients:
// 1. Instance variables

private double width = 0; .
private double height = 0; L. DEﬁnE the variables each

private double yc = 0; .
private double xc = 0; Instance stores
private boolean isFilled = false;
private boolean isVisible = false;

2. Define the constructor used

// 2. Constructor(s) i
public GRect(double width, double height) { w0 ﬂ]ﬂke d new Instance

this.width = width;
this.height = height;
}

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public
this.
this.

}
public

this.
this.
this.
this

ass GRect {

nstance variables

double width = 9;

double height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

onstructor(s)

GRect(double width, double height) {
width = width;

height = height;

GRect(double x, double v,
double width, double height) {
XC = X;
yc = VY5
width = width;

.height = height;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public
this.
this.

}
public

this.
this.
this.
this

ass GRect {

variables

width = 0;

height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

nstance
double
double

onstructor(s)

GRect(double width, double height) {
width = width;

height = height;

GRect(double x, double v,
double width, double height) {

XC = X;

yc = VY;

width = width;
.height = height;

// 3. Public methods
public double getWidth() {
return this.width;

}

public double getHeight() {
return this.height;

}

public

}

this.

public

}

this.
this.

void setFilled(boolean newlsFilled) {
isFilled = newlsFilled;

void move(double dx, double dy) {
XC += dx;
yc += dy;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

3. Define the methods you can
call on an instance

Making a Ball variable type

1. Define the each instance stores (think: state/properties)

Each ball has its own GOval (let’s call it circle)

Each ball has its own dx
Each ball has its own dy

2. Define the used to make @ new instance
Set initial values for all the instance vars

j. Define the you can call on an instance (think: behaviors)
heartbeat()

getGOval()

circle
dx
dy

circle c circle
a dx R dx
dy - dy

~ circle
circle dx
dx dy

dy

But if each Ball instance has a copy of each instance variable...

.. how does Java know which one to use?

this

* all class methods and constructors have access to a this reference

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public
this.
this.

}
public

this.
this.
this.
this

ass GRect {

variables

width = 0;

height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

nstance
double
double

onstructor(s)

GRect(double width, double height) {
width = width;

height = height;

GRect(double x, double v,
double width, double height) {

XC = X;

yc = VY;

width = width;
.height = height;

// 3. Public methods
public double getWidth() {
return this.width;

}

public double getHeight() {
return this.height;

}

public

}

void setFilled(boolean newlskFilled) {

|this.

isFilled = newlsFilled;

public

}

this.
this.

void move(double dx, double dy) {
XC += dx;
yc += dy;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

3. Define the methods you can
call on an instance

GRect

.Java

public cl

// 1.1
private
private
private
private
private
private

// 2. C
public

ass GRect {

nstance variables

double width = 9;

double height = 0;

double yc = 0;

double xc = 0;

boolean isFilled = false;
boolean isVisible = false;

onstructor(s)
GRect(double width, double height) {

this.
this.

width = width;
height = height;

}
public

this.
this.
this.
this

GRect(double x, double v,
double width, double height) {
XC = X;
yc = VY5
width = width;

.height = height;

// 3. Public methods
public double getWidth() {
return this.width;

}

public double getHeight() {
return this.height;

}

public

}

this.

public

}

this.
this.

void setFilled(boolean newlsFilled) {
isFilled = newlsFilled;

void move(double dx, double dy) {
XC += dx;
yc += dy;

3 Ingredients:

1. Define the variables each
instance stores

2. Define the constructor used
to make a new instance

3. Define the methods you can
call on an instance

public class BouncingBall extends GraphicsProgram {
public void run() {
// make a few new bouncing balls
Ball a = new Ball();
Ball b = new Ball();

// call a method on one of the balls
=) a.heartbeat(getWidth(), getHeight());

public void heartbeat(int sWidth, int sHeight) {

mmm) this.circle.move();
reflectOffWalls(sWidth, sHeight);

heartbeat() was called on ball a

&L

} = So, this refersto a
}
code
Stack frames
memaory
run() a 42 —
b 52 &—_
heartbeat
0 this 42
sWidth 800
sHeight 600

Plan for Today

e Interactors

39

Review: Interactors

JComponent

N

JButton JLabel JTextField

40

Review: Interactors

Interactors can be placed in 5 regions on the screen.
NORTH

CENTER

—“nms
—mn>m

SOUTH

e The centeris usually where things happen!

o The ConsoleProgram adds the Console there.
o The GraphicsProgram add the Canvas there.

e We only see the other regions of the screen if we add
interactors there using add(component, REGION)
e Inferactors are automatically centered in their region. "

Building intferactors in your program

Add interactors in init() in order
addActionListeners() to listen for button presses

.addActionListener(this) on text fields for ENTER
e Plus (usually) setActionCommand(command)

Implement actionPerformed
Java will call actionPerformed whenever an action event

OCCUIS

42

Review: QOur First Inferactor

. . . | @ ® OurFirstinteractor [completed] |
import javax.swing.*; m a JLabel!

import java.awt.event*;
public class ourFirstInteractor extends ConsoleProgram {
private JTextField textField = new JTextField(15);

public void init(){ |
add(new JLabel(“I’m a JLabel!”), NORTH);
add(new JButton(“I’m a Button!”), SOUTH);
add(textField, WEST);
addActionListeners(); In order to detect

} actions in these fields,

we must
} addActionListeners()

I’m a Button!

43
O

Qur First Interactor

import javax.swing.*;
import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {
. // added JComponents, etc here
public void actionPerformed(ActionEvent e){
// If we click the button, this will trigger

String text = textField.getText();
println(text);

!
I love CS106A!
|

OurFirstinteractor [completed]

I’m a JLabel!

I love CS106A!

I’'m alﬂgon!

44

MadlLibs

@ @ MadLibsSoln [completed]
CS106A MadLibs!
Fill in the blanks to create your MadLibs!

Name
Past Tense Verb

Feeling

Coding Concept

Create

45

MadlLibs Code

public class MadLibsSoln extends ConsoleProgram {

private JTextField nameField = new JTextField(15);
private JTextField verbField = new JTextField(15);
private JTextField feelingField = new JTextField(15);
private JTextField codeField = new JTextField(15);

public void init() {
add(new JLabel("CS106A MadLibs!"), NORTH);
add(new JLabel("Name"), WEST);
add(nameField, WEST);
add(new JLabel("Past Tense Verb"), WEST);
add(verbField, WEST);
add(new JLabel("Feeling"), WEST);
add(feelingField, WEST);
add(new JLabel("Coding Concept"), WEST);
add(codeField, WEST);
add(new JButton("Create"), WEST);
addActionListeners();

}

public void run(){
println("Fill in the blanks to create your MadLibs! \n");

public void actionPerformed(ActionEvent e) {
String name = nameField.getText();
String verb = verbField.getText();
String feeling = feelingField.getText();
String code = codeField.getText();

createMadLib(name, verb, feeling, code);

}

private void createMadLib(String name, String verb, String feeling, String code) {
println("0On " + name + "'s first day of CS106A they accidentally woke up");
println("late for class! They " + verb + " to class, but when " + name);
println("arrived at Bishop Auditorium, no one was there! " + name + " was ");
println(feeling + ". Well, good thing no one uses " + code + " anyways.");

46
}
e

Review: actionPerformed

Method Description

e.getActionCommand() | a text description of the event
(e.g., the text of the button clicked)

e.getSource() the interactor that generated the event

public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){
println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){
println(“Button 2 was pressed”);

}

4/

Two Button Example

| NON) FavoriteMascot [completed]

Duke

Duke is the best mascot!
Karel is the best mascot!
Karel is the best mascot!
Duke is the best mascot!
Duke is the best mascot!
Karel is the best mascot!
Duke is the best mascot!

Karel 48

Two Button Example Code

public class FavoriteMascot extends ConsoleProgram {

private JButton duke = new JButton("Duke");
private JButton karel = new JButton("Karel");

public void init() {
add(duke, NORTH);
add(karel, SOUTH);
addActionListeners();

}

public void actionPerformed(ActionEvent e){
if(e.getSource() == duke){
println("Duke is the best mascot!");
} else if (e.getSource() == karel){
println("Karel is the best mascot!");
}

49

Anyone can be a computer

sclenftist!
@/

/

You don’t have to be ©
Computer Scientfist to use
CS to solve problems!

5

We've enjoyed learning with
you and can’'t wait to see
what you do next!

il

Last ever CS106A slide in Java...!

Thank you for a great quarter!

54

Really last slide

Hehe =D

