
Final Exam Review 2
CS106A, Summer 2019
Trey Connelly && Aditya Chander
Slides mostly from Sarai Gould && Laura Cruz-Albrecht



Plan for Today

● HashMaps
● Classes
● Interactors
● Closing Remarks

2



Plan for Today

● HashMaps
● Classes
● Interactors
● Closing Remarks

3



HashMaps

A variable type that represents a collection of key-value pairs 

● You access values by key, and all keys are unique 
● Keys and values can be any type of Object (use wrapper 

classes to store primitives) 
● Resizable – can add and remove pairs 
● Has a variety of methods you can use, including 

.containsKey, .put, .get, .keySet, etc.

4



HashMaps

HashMap<String, String> firstMap = new HashMap<String, String>();

5

Data Type of “keys” 
in our HashMap

Data Type of “values” 
in our HashMap

Repeated types of 
key->value pairs



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

6

sounds



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

7

sounds

“dog”     “woof” “cat”     “meow”

key                            value key                            value



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

8

sounds

“dog”     “woof” “cat”     “meow”

woof
meow

key                            value key                            value



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

9

sounds

“dog”     “woof” “cat”     “meow”

woof
meow

key                            value key                            value



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

10

sounds

“dog”     “woof” “cat”     “meow”

woof
meow
null

key                            value key                            value



Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

11

sounds

“dog”     “woof” “cat”     “meow”

* Music reference… Not just crazy. 

woof
meow
null

“fox” “ring-ding-ding-ding-dingeringeding”

key                            value key                            value key                                                                value



Our Improved HashMap

import java.util.*;

HashMap<String, ArrayList<String>> animalSounds = new HashMap<>();

ArrayList<String> dogSounds = new ArrayList<>();

dogSounds.add(“woof”);

dogSounds.add(“bark”);

animalSounds.put(“dog”, dogSounds);

12

sounds

“dog”      (“woof”, “bark”)

key                                                 value 



...
animalSounds.put(“cat”, catSounds); // (meow, hiss)

...
for(String animal : animalSounds.getKeySet()){

    ArrayList<String> sounds = animalSounds.get(animal);

    for(String sound : sounds){
println(sound);

    }
}

Our Improved HashMap Part 2

13

sounds

“dog”      (“woof”, “bark”)

key                                                 value 

woof
bark
meow
hiss

“cat”      (“meow”, “hiss”)

key                                                 value 



Review: What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105); 

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”)); 

14

numLimbs

“snail”      105 “octopus”      8

key                                 value key                                       value



Review: What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105); 

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”)); 

15

numLimbs

“snail”      105 “octopus”      8

null
105
8

key                                 value key                                       value



Review: HashMap Commands

16

HashMap<String, String> myMap = new HashMap<String, String>(); 

// Adds key->value pairs 

myMap.put(“dog”, “woof”);

myMap.put(“cat”, “meow”);

// Removes key and the associated value

myMap.remove(“dog”, “woof”);

// A beautiful way to access each key

for (String key : myMap.keySet()) {

println(key);

// print the value associated with the key

println(myMap.get(key));

}



Review: Data Structures

17

ArrayListsArrays

2D Arrays HashMaps

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Which Data Structure to Use?
●  Use an array if… 

○ Order matters for your information 
○ You know how many elements you will store 
○ You need the most efficiency 

● Use an ArrayList if… 
○ Order matters for your information 
○ You do not know how many elements you will store, or need to resize 
○ You need to use ArrayList methods 

● Use a HashMap if… 
○ Order doesn’t matter for your information 
○ You need to store an association between two types of information 
○ You do not know how many elements you will store, or need to resize 
○ You need to use HashMap methods 18



Which data structure to use?

19

Data 
structure 
name

Ordered? Fixed size? Value only or 
key-value?

Can store 
primitives?

array/2D 
array

yes yes Value only yes

ArrayList yes no Value only no (objects 
only)

HashMap no no Key-value no (objects 
only)



Plan for Today

● HashMaps
● Classes
● Interactors
● Closing Remarks

20



A class defines a 
new variable type.

21



Hedgehog #1 (variable)

State:  name = “Walnoot”
  color = Brown
  cuteness = 10 (Very cute)

Behavior:   Can eat
                   Can run

         Can curl up

Classes Are Like Blueprints

22

Hedgehog Class (blueprint)

State:    Has name
    Has color
    Has cuteness level

Behavior:   Can eat
                   Can run*

         Can curl up

Hedgehog #2 (variable)

State:  name = “Nutmeg”
  color = Snowflake
  cuteness = 15 (VERY cute)

Behavior:   Can eat
                   Can run

         Can curl up

Hedgehog #3 (variable)

State:  name = “Ruffles”
  color = Beige
  cuteness = 50 (speechless)

Behavior:   Can eat
                   Can run

         Can curl up

Blueprint for 
Hedgehog



Making a Class ~ 3 Ingredients

1. Define the variables each instance stores (state)

2. Define the constructor used to make a new instance

3. Define the methods you can call on an instance (behaviors)

23



Using Constructors
BankAccount dukeAccount = new BankAccount(“Duke”, 50);

BankAccount karelAccount = new BankAccount(“Karel”);

When you call a constructor (with new):
1. Java creates a new “instance” of that class
2. The constructor initializes the object’s state (instance variables)
3. The newly created object is returned to your program* 24

name = “Duke”
balance = 50

BankAccount(name, bal) { 
this.name = name; 
this.balance = bal; 

}

name = “Karel”
balance = 0

BankAccount(name) { 
this.name = name; 
this.balance = 0; 

}

dukeAccount karelAccount



Review: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount 

private String name; 

private double balance;

// Step 2: how to create a new BankAccount

public BankAccount(String name) { 

this.name = name; 

this.balance = 0; 

} 

// Step 3: the things a BankAccount can do 

public void deposit(double amount) { 

this.balance += amount; 

} 

public boolean withdraw(double amount) { 

if (this.balance >= amount) { 

this.balance -= amount; 

return true; 

} 

return false; 

}

} 25



Review: Getters & Setters
public class BankAccount {

private String name; 

private double balance;

…
// “setter”

public void setName(String newName) { 

if (newName.length() > 0) { 

this.name = newName; 

} 

}

// “getters”

public String getName() { 

return this.name;

}

public double getBalance() { 

return this.balance;

}

} 26



Unpacking GRect

public class GRect {
    private double width;
    public GRect(double width, double height) {
        ...
    }
   ...
}

GRect.java



public class GRect {

GRect.java

3 Ingredients:



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

 

GRect.java

3 Ingredients:

1. Define the variables each 
     instance stores



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

  // 2. Constructor(s)
  public GRect(double width, double height) {
    this.width = width;
    this.height = height;
  }

 

GRect.java

3 Ingredients:

1. Define the variables each 
     instance stores

2.  Define the constructor used 
     to make a new instance



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

  // 2. Constructor(s)
  public GRect(double width, double height) {
    this.width = width;
    this.height = height;
  }

  public GRect(double x, double y,
               double width, double height) {
    this.xc = x;
    this.yc = y;
    this.width = width;
    this.height = height;
  }

GRect.java

3 Ingredients:

1. Define the variables each 
     instance stores

2.  Define the constructor used 
     to make a new instance



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

  // 2. Constructor(s)
  public GRect(double width, double height) {
    this.width = width;
    this.height = height;
  }

  public GRect(double x, double y,
               double width, double height) {
    this.xc = x;
    this.yc = y;
    this.width = width;
    this.height = height;
  }

GRect.java

  // 3. Public methods
  public double getWidth() {
    return this.width;
  }

  public double getHeight() {
    return this.height;
  }

  public void setFilled(boolean newIsFilled) {
    this.isFilled = newIsFilled;
  }

  public void move(double dx, double dy) {
    this.xc += dx;
    this.yc += dy;
  }

}

3 Ingredients:

1. Define the variables each 
     instance stores

2.  Define the constructor used 
     to make a new instance

3.  Define the methods you can 
     call on an instance



Making a Ball variable type
1.  Define the variables each instance stores (think: state/properties)

Each ball has its own GOval (let’s call it circle)
Each ball has its own dx
Each ball has its own dy

 

2.  Define the constructor used to make a new instance
Set initial values for all the instance vars

 

3.  Define the methods you can call on an instance (think: behaviors)
heartbeat()
getGOval()



But if each Ball instance has a copy of each instance variable...

a

… how does Java know which one to use?

circle
dx
dy

circle
dx
dy

d

b

e

c

circle
dx
dy

circle
dx
dy circle

dx
dy



this

 * all class methods and constructors have access to a this reference



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

  // 2. Constructor(s)
  public GRect(double width, double height) {
    this.width = width;
    this.height = height;
  }

  public GRect(double x, double y,
               double width, double height) {
    this.xc = x;
    this.yc = y;
    this.width = width;
    this.height = height;
  }

GRect.java

  // 3. Public methods
  public double getWidth() {
    return this.width;
  }

  public double getHeight() {
    return this.height;
  }

  public void setFilled(boolean newIsFilled) {
    this.isFilled = newIsFilled;
  }

  public void move(double dx, double dy) {
    this.xc += dx;
    this.yc += dy;
  }

}

3 Ingredients:

1. Define the variables each 
     instance stores

2.  Define the constructor used 
     to make a new instance

3.  Define the methods you can 
     call on an instance



public class GRect {

  // 1. Instance variables
  private double width = 0;
  private double height = 0;
  private double yc = 0;
  private double xc = 0;
  private boolean isFilled = false;
  private boolean isVisible = false;

  // 2. Constructor(s)
  public GRect(double width, double height) {
    this.width = width;
    this.height = height;
  }

  public GRect(double x, double y,
               double width, double height) {
    this.xc = x;
    this.yc = y;
    this.width = width;
    this.height = height;
  }

GRect.java

  // 3. Public methods
  public double getWidth() {
    return this.width;
  }

  public double getHeight() {
    return this.height;
  }

  public void setFilled(boolean newIsFilled) {
    this.isFilled = newIsFilled;
  }

  public void move(double dx, double dy) {
    this.xc += dx;
    this.yc += dy;
  }

}

3 Ingredients:

1. Define the variables each 
     instance stores

2.  Define the constructor used 
     to make a new instance

3.  Define the methods you can 
     call on an instance



public class BouncingBall extends GraphicsProgram {

public void run() {

// make a few new bouncing balls

Ball a = new Ball();

Ball b = new Ball();

// call a method on one of the balls

a.heartbeat(getWidth(), getHeight());

}

}

memory

public void heartbeat(int sWidth, int sHeight) {

this.circle.move();

reflectOffWalls(sWidth, sHeight);

}

Stack frames heap

code

run() a 42

42

circle

dx = 1.0
dy = 1.5

b 52

52

circle

dx = -1.2
dy = -1.1

heartbeat()
this

sWidth

42

800

sHeight 600

heartbeat() was called on ball a
⇒ So, this refers to a



Plan for Today

● HashMaps
● Classes
● Interactors
● Closing Remarks

39



Review: Interactors

40

JComponent

JButton JLabel JTextField



Review: Interactors

Interactors can be placed in 5 regions on the screen.

● The center is usually where things happen!
○ The ConsoleProgram adds the Console there.
○ The GraphicsProgram add the Canvas there.

● We only see the other regions of the screen if we add 
interactors there using add(component, REGION)

● Interactors are automatically centered in their region. 41



Building interactors in your program

1. Add interactors in init() in order
2. addActionListeners() to listen for button presses 
3. .addActionListener(this) on text fields for ENTER 

● Plus (usually) setActionCommand(command)
4. Implement actionPerformed 
5. Java will call actionPerformed whenever an action event 

occurs

42



Review: Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

private JTextField textField = new JTextField(15);

public void init(){

add(new JLabel(“I’m a JLabel!”), NORTH);

add(new JButton(“I’m a Button!”), SOUTH);

add(textField, WEST);

addActionListeners();

}

} 43

In order to detect 
actions in these fields, 
we must
addActionListeners()



Our First Interactor

import javax.swing.*;

import java.awt.event*;

public class ourFirstInteractor extends ConsoleProgram {

... // added JComponents, etc here

public void actionPerformed(ActionEvent e){

// If we click the button, this will trigger

String text = textField.getText();

println(text);

}

} 44



MadLibs

45



MadLibs Code

46



Review: actionPerformed

47

public void actionPerformed(ActionEvent e){

String command = e.getActionCommand();

if(command.equals(“Button 1”)){

println(“Button 1 was pressed”);

} else if (command.equals(“Button 2”)){

println(“Button 2 was pressed”);

}

}



Two Button Example

48



Two Button Example Code

49



50



Anyone can be a computer 
scientist!

51



You don’t have to be a 
Computer Scientist to use  

CS to solve problems!

52



We’ve enjoyed learning with 
you and can’t wait to see 

what you do next!

53



Last ever CS106A slide in Java…!

Thank you for a great quarter!

54



Really last slide

Hehe =D

55


