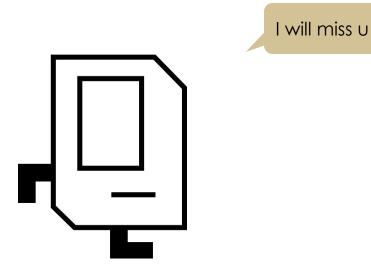


Introduction to Java: Expressions and Variables Lecture 4

CS106A, Summer 2019 Sarai Gould & Laura Cruz-Albrecht

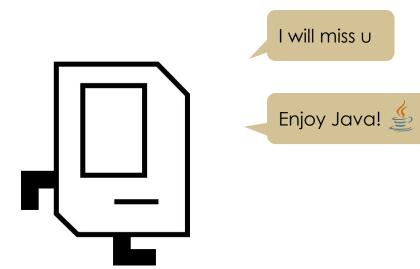
With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements


- If you have midterm conflicts, email both instructors ASAP
 and fill out the following form (by July 8th at the latest):

 <u>http://bit.ly/CS106AMidtermConflicts</u>
- Please email both instructors as soon as possible if you have academic accommodations from the OAE
- Assignment 1 out!
- "Extra" slides: treat these as required reading

Plan for Today


- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt

Hello, Java!

* fun fact: this is the official Java mascot

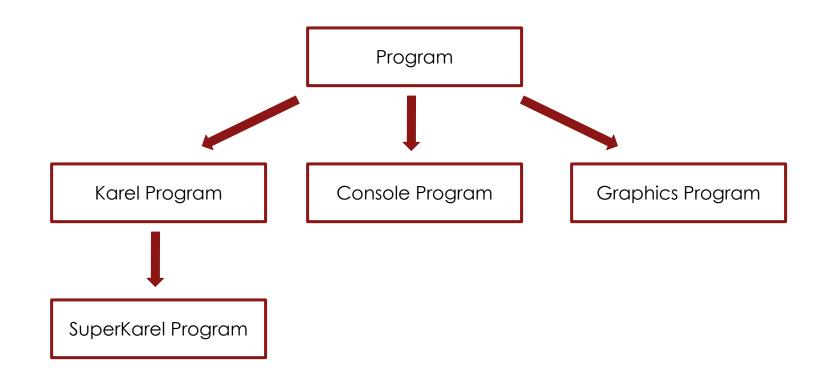
Hello, Java!

I like Karel a latte 🧡 ... but i'm cooler

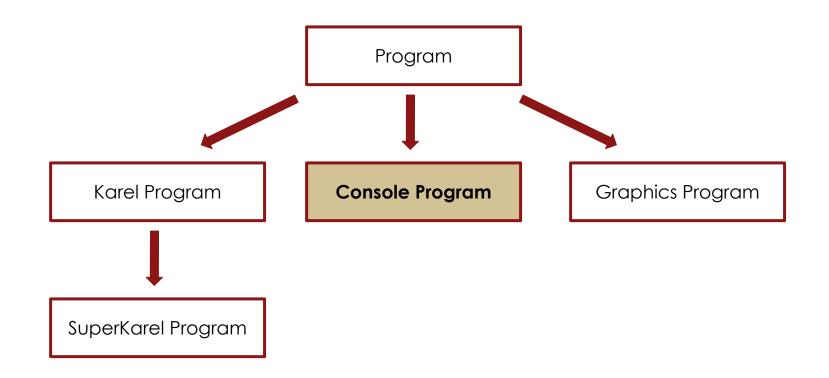
* fun fact: this is the official Java mascot

Hello, Java!

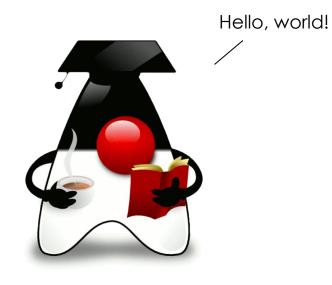
* fun fact: this is the official Java mascot


Plan for Today

- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt


Types of Programs

Program


Types of Programs

Types of Programs

Our First Java Program

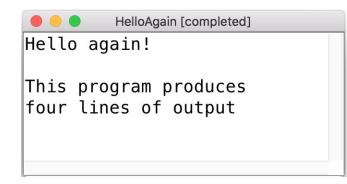
Hello, World

		HelloWorld [completed]
Hello,	world!	

Our First Java Program

```
import acm.program.*;
public class HelloWorld extends ConsoleProgram {
    public void run() {
        println("Hello, world!");
    }
}
```

		HelloWorld [completed]
Hello,	world!	


Console Programs

```
import acm.program.*;
public class Name extends ConsoleProgram {
    public void run() {
        statements;
    }
}
```

- Unlike Karel, many programs produce their behavior as text
- Console: textbox into which the behavior is displayed
 - Output: messages displayed by the program
 - Input: data read by the program that the user types

Console Programs

```
public class HelloAgain extends ConsoleProgram {
    public void run() {
        println("Hello again!");
        println();
        println("This program produces");
        println("four lines of output");
    }
}
```


Console Output: println

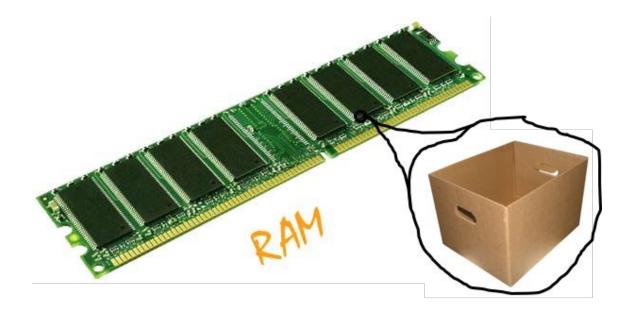
- println: a statement that prints a line of output on the console, and goes to the next line
- Two uses:

println("TEXT"); // prints the string TEXT
println(); // prints blank line

- I/O: Input/Output
- println allows out to output text to the user via the console
- We can also get input from the user via the console
 - But before we can get input from the user, we need a way to store it...

Plan for Today

- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt



What's a variable?

Variables = Boxes

Variables = Boxes

* my computer has space for about 2 billion boxes

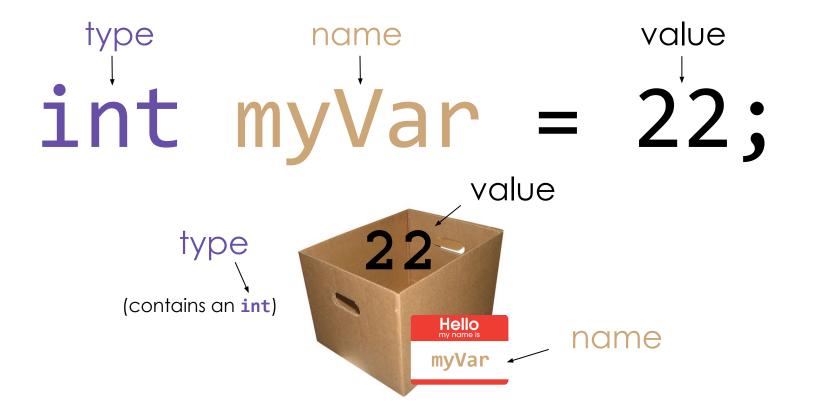
int myVar = 22;

int myVar = 22;

int myVar = 22;

int myVar = 22;

3 Properties


int myVar = 22;

3 Properties

3 Properties

Variable Types

// an integer number
int num = 5;

// a real (decimal) number
double fraction = 0.2;

// true or false
boolean isSummer = true;

Variable Types

```
// a single character
char letter = 'c';
```

```
// a "string" of text
String phrase = "Hi!";
String alsoAString = "5"; // not an int!
```

Double vs. Int

Double - answer is a decimal **How much** do I weigh?

Int - answer is an integer How many pets do I have?

Making a Variable

int myVar = 22;

Making a Variable

int myVar; myVar = 22;

Making a Variable

int myVar; // declare myVar = 22; // assign

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used
 - int myBox;

myBox

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used

int myBox;

I				
I				
I				
I				
I				
I				
Į				_

myBox

- Assignment: stores a value into an existing variable
 - value can be an expression; variable stores its result

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used

int myBox;

myBox

- Assignment: stores a value into an existing variable
 - value can be an expression; variable stores its result double cost; // declaration

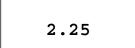
1		

cost

42

Declaration & Assignment

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used int myBox;
- Assignment: stores a value into an existing variable
 - value can be an expression; variable stores its result double cost; // declaration
 cost = 1.5 + 0.75; // assignment


2.25

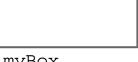
cost

myBox

- **Declaration**: sets aside memory for storing a value
 - Variables must be declared before they can be used int myBox;
- Assignment: stores a value into an existing variable
 - value can be an expression; variable stores its result double cost; // declaration
 cost = 1.5 + 0.75; // assignment
- Commonly, a variable is declared + initialized in one statement

cost

myBox


44

Declaration & Assignment

- **Declaration:** sets aside memory for storing a value
 - Variables must be declared before they can be used Ο int myBox;
- Assignment: stores a value into an existing variable
 - value can be an expression; variable stores its result Ο double cost; // declaration cost = 1.5 + 0.75; // assignment
- Commonly, a variable is declared + initialized in one statement int saraisBox = 4; 4

myBox

cost

2.25

What Happens Here?

• What happens here?

int x = 3; x = x + 2; // ?

?

х

What Happens Here?

• What happens here?

int x = 3; x = x + 2; // 5

5	
---	--

х

'=' Means Assignment

• What happens here?

int x = 3; x = x + 2; // 5

5	

Х

- Assignment uses =, but it's not an algebraic equation
 - = means: store the value at right in the variable at left
 - Right side expression evaluated first, then stored in variable at left

Outputting Variable Value

// creates variable called temperature with value 64.8
double temperature = (72.2 + 57.4) / 2.0;

Outputting Variable Value

// creates variable called temperature with value 64.8
double temperature = (72.2 + 57.4) / 2.0;

// prints value of temperature variable to the console
println(temperature); // 64.8

Outputting Variable Value

// creates variable called temperature with value 64.8
double temperature = (72.2 + 57.4) / 2.0;

// prints value of temperature variable to the console
println(temperature); // 64.8

// can use + to print string and variable's value
println("avg temp is " + temperature); // avg temp is 64.8

• Once given a value, variables can be used in expressions

int myVar = 22;
println(2 * myVar + 1); // 45

• You can assign a value more than once

• You can assign a value more than once

temperature

// declare double temperature = (72.2 + 57.4) / 2.0; println("temp yesterday: " + temperature); // temp yesterday: 64.8

• You can assign a value more than once

temperature

// declare
double temperature = (72.2 + 57.4) / 2.0;
println("temp yesterday: " + temperature); // temp yesterday: 64.8

// reassign
temperature = 72.1;

• You can assign a value more than once

temperature

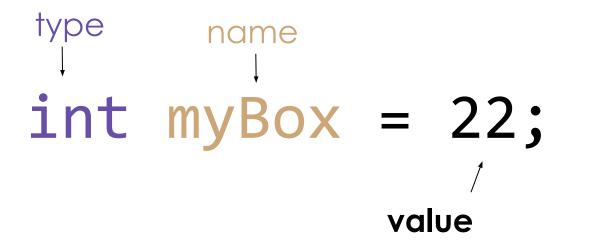
```
// declare
double temperature = (72.2 + 57.4) / 2.0;
println("temp yesterday: " + temperature); // temp yesterday: 64.8
```

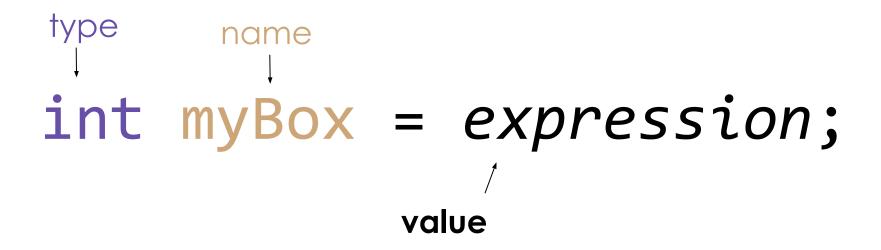
// reassign
temperature = 72.1;
println("temp today: " + temperature); // temp today: 72.1

Assignment and Types

• A variable can only store a value of its own type

int x = 2.5; // Error: incompatible types

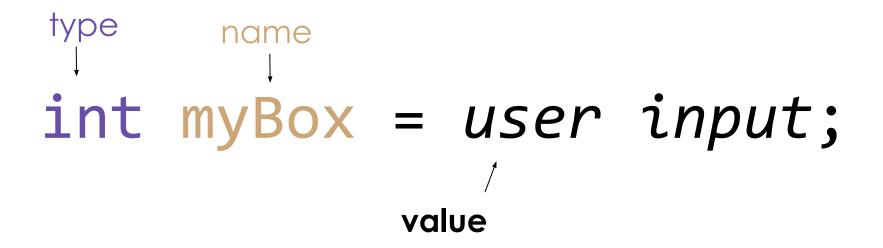



Assignment and Types

• A variable can only store a value of its own type

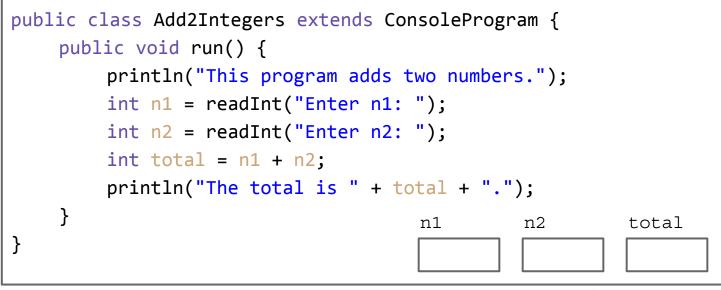
int x = 2.5; // Error: incompatible types RESTRICTED AREA INTs ONLY

- An int value can be stored in a double variable
 - The value is converted into the equivalent real number

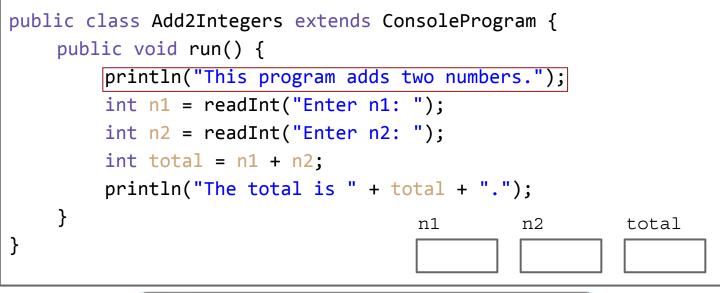


example: double temperature = (72.2 + 57.4) / 2.0; // 64.8

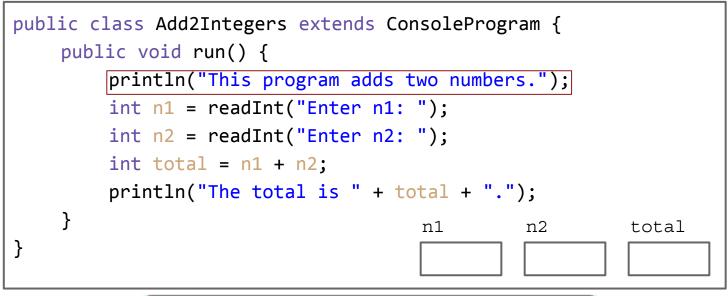
Let's now get values from user input!

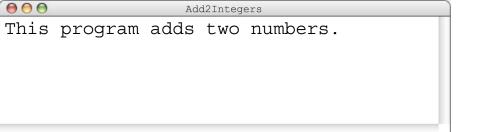


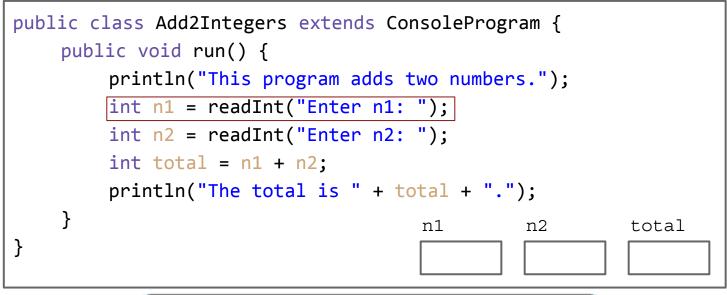
Values from User Input

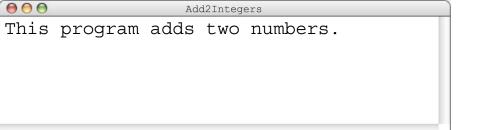

// Prompts user for a whole number. Stores result
// in a variable (aka a box).
int pets = readInt("How many pets? ");

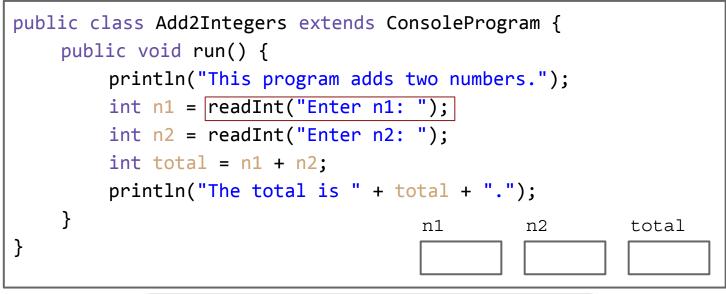
// Prompts user for a decimal number. Stores result
// in a variable (aka a box).
double tip = readDouble("Tip? \$ ");

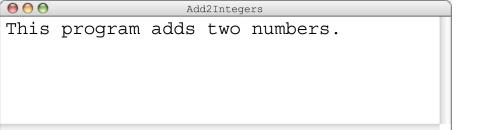

// Prompts user for a boolean & stores result in variable.
boolean isSunny = readBoolean("Sun shining? ");

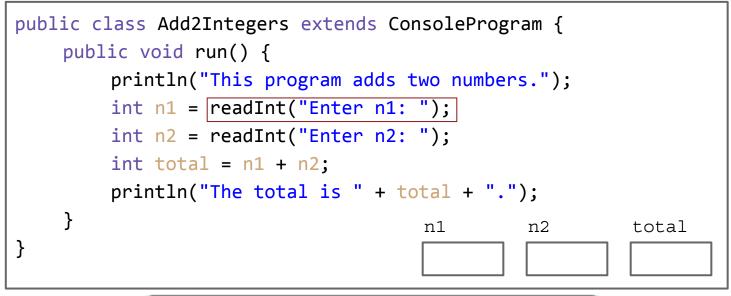


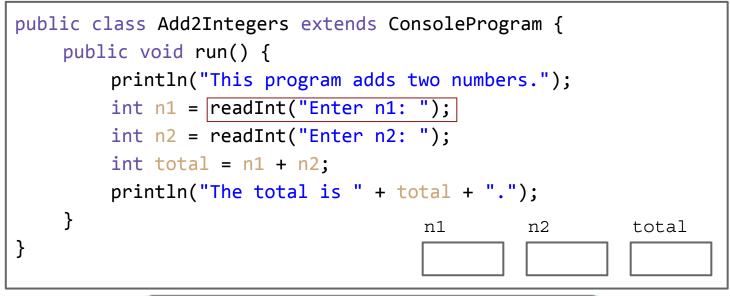


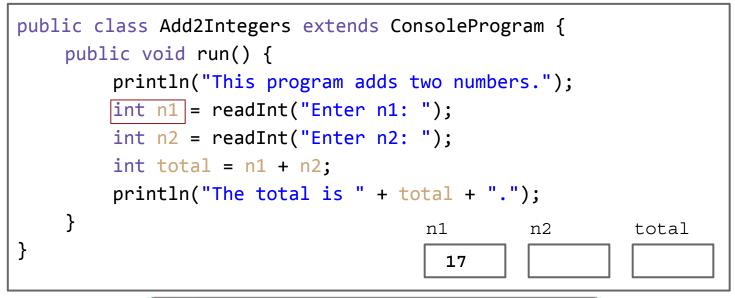


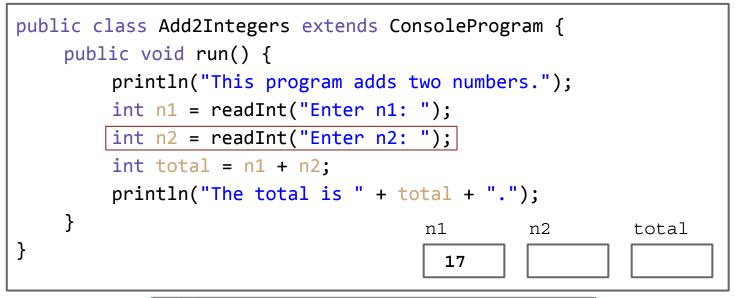


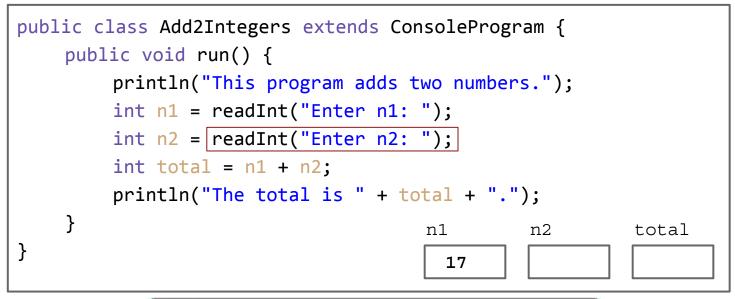


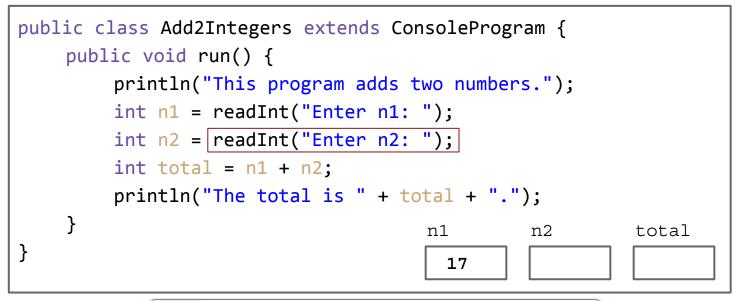


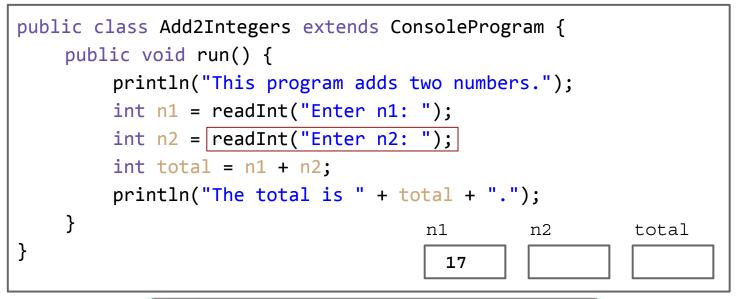


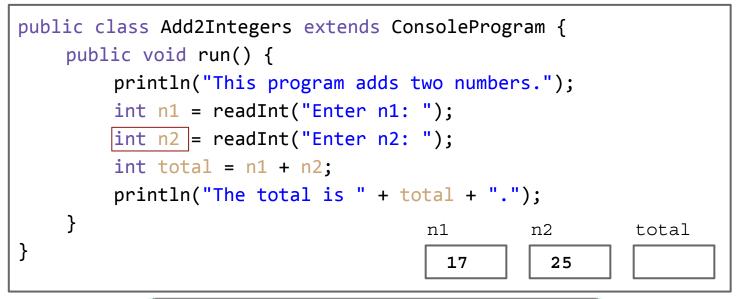


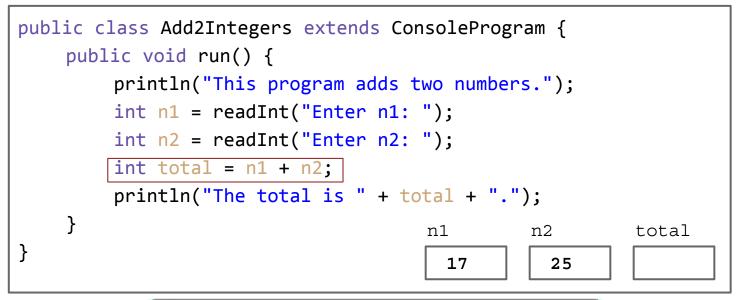

$(\bigcirc \bigcirc \bigcirc \bigcirc$		Add2Integers				
This	program	adds	two	numbers.		
Entei	n1:					

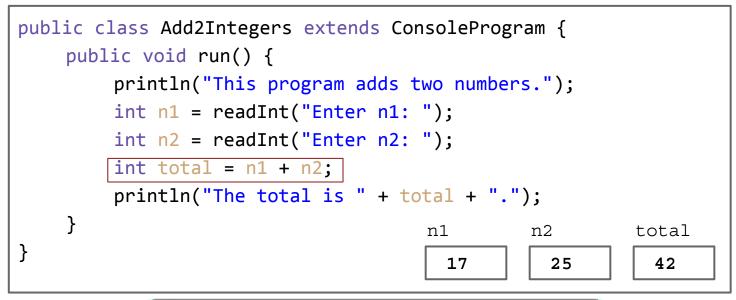

$\bigcirc \bigcirc \bigcirc \bigcirc$		Add2Integers					
This	program	adds	two	numbers.			
Ente	r n1: 17						

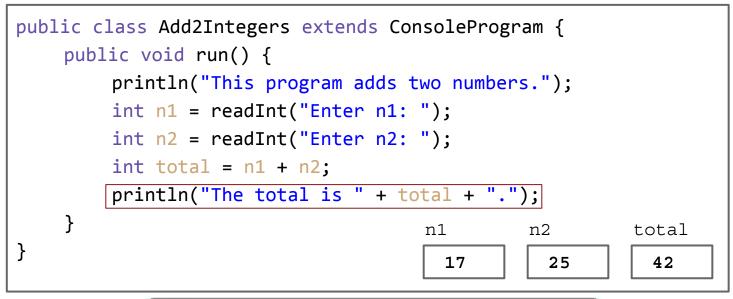

$\bigcirc \bigcirc \bigcirc \bigcirc$	Add2Integers					
This program	adds	two	numbers.			
Enter n1: 17						

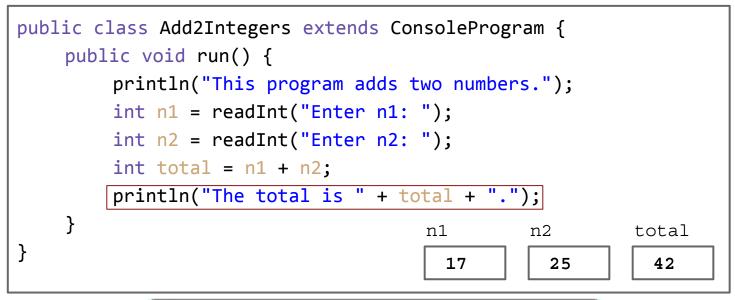

$\Theta \Theta \Theta$	Add2Integers				
This	program	adds	two	numbers.	
Enter	n1: 17				


$\bigcirc \bigcirc \bigcirc \bigcirc$	Add2Integers					
This p	rogram	adds	two	numbers.		
Enter	n1: 17					


	Add2I:	ntegers	
This program a	dds t	wo numbers.	
Enter n1: 17			
Enter n2:			


	Ad	d2Integ	ers	
This program	adds	two	numbers.	
Enter n1: 17				
Enter n2: 25				


000			Ade	d2Integ	ers	
This p	prog	cam	adds	two	numbers.	
Enter	n1:	17				
Enter	n2:	25				


0			Ade	d2Integ	ers	
This p	prog	ram	adds	two	numbers.	
Enter	n1:	17				
Enter	n2:	25				

00	A	dd2Integer	îs	
This progr	am adds	two i	numbers.	
Enter n1:	17			
Enter n2:	25			

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Ad	d2Integ	ers	
This program	adds	two	numbers.	
Enter n1: 17				
Enter n2: 25				

	Ad	d2Integ	ers	
This program	adds	two	numbers.	
Enter n1: 17				
Enter n2: 25				
The total is	42.			

```
public class Add2Integers extends ConsoleProgram {
    public void run() {
         println("This program adds two numbers.");
         int n1 = readInt("Enter n1: ");
         int n2 = readInt("Enter n2: ");
         int total = n1 + n2;
         println("The total is " + total + ".");
                                      n1
                                                n2
                                                         total
}
                                        17
                                                 25
                                                           42
```

$\bigcirc \bigcirc \bigcirc \bigcirc$	Ad	d2Integ	ers	
This program	adds	two	numbers.	
Enter n1: 17				
Enter n2: 25				
The total is	42.			

Compiler Errors

1. A variable can't be used until it is assigned a value

int x;
println(x); // Error: x has no value

2. You may not declare the same variable twice

- 3. You may not use a variable until it is declared
 - z = 10; // Error: z cannot be resolved

Plan for Today

- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt

Expressions

• You can combine literals or variables together into **expressions** using binary operators:

- + Addition * Multiplication
- Subtraction / Division % Remainder

Order of Operations

int result = 4 + 2 * 3;

Priority	Operator	Tie breaker
Highest	()	Left to right
Middle	* / %	Left to right
Lowest	+ -	Left to right

Order of Operations

// Multiplication before addition
int result = 4 + 2 * 3; // 10

Priority	Operator	Tie breaker
Highest	()	Left to right
Middle	* / %	Left to right
Lowest	+ -	Left to right

Order of Operations

// Multiplication before addition
int result = 4 + 2 * 3; // 10

// Parens first, then left to right
int tot = 1 + 2 + (3 * 4); // 15

Priority	Operator	Tie breaker
Highest	()	Left to right
Middle	* / %	Left to right
Lowest	+ -	Left to right

Expressions

• You can combine literals or variables together into **expressions** using binary operators:

+ Addition

* Multiplication

- Subtraction / Division
 - % Remainder

%: Integer Remainder or Modulus

• The % operator computes the remainder from integer division

%: Integer Remainder or Modulus

• The % operator computes the remainder from integer division

14 % 4 is 2	218 % 5 is 3
$\frac{3}{2}$	$\frac{43}{242}$
4) 14	5) 218
<u>12</u>	<u>20</u>
2	18
	<u>15</u>
	3

- Applications of % operator:
 - Obtain last digit of a number:
 - Obtain last 3 digits:
 - See if a number is odd or even:

857 % 10 is 7
26489 % 1000 is 489
7 % 2 is 1, but 42 % 2 is 0

What do you think this does?

double successRate = 1 / 2;

double successRate = 1 / 2;

successRate

When we divide integers, the quotient is also an integer
 14 / 4 is 3, not 3.5 (Java always rounds down)

When we divide integers, the quotient is also an integer
 14 / 4 is 3, not 3.5 (Java always rounds down)

double successRate = 1 / 2;

When we divide integers, the quotient is also an integer
 14 / 4 is 3, not 3.5 (Java always rounds down)

double successRate = 1 / 2; int int

When we divide integers, the quotient is also an integer
 14 / 4 is 3, not 3.5 (Java always rounds down)

When we divide integers, the quotient is also an integer
 14 / 4 is 3, not 3.5 (Java always rounds down)

- $1/2 \rightarrow$ would be 0.5 \rightarrow truncated to **0**
- 14/4 \rightarrow would be 3.5 \rightarrow truncated to **3**
- 199 / 100 \rightarrow would be 1.99 \rightarrow truncated to **1**

Type Interactions

int and intrefurns on int $7/2 \rightarrow 3$

int and double returns a double 7 / 2.0 \rightarrow 3.5 double and double returns a double 4.4 * 0.5 \rightarrow 2.2

* operations return the most expressive type
String > double > int > char > boolean

Convert 100° Celsius temperature to its Fahrenheit equivalent: double c = 100; double f = 9 / 5 * c + 32;

Convert 100° Celsius temperature to its Fahrenheit equivalent: double c = 100;

double f = 9 / 5 * c + 32;

Convert 100° Celsius temperature to its Fahrenheit equivalent:

Convert 100° Celsius temperature to its Fahrenheit equivalent:

double c = 100; double f = 9 / 5 * c + 32; // 132
1

Convert 100° Celsius temperature to its Fahrenheit equivalent:

How can we fix it? double c = 100; double f = **9.0** / 5 * c + 32;

Convert 100° Celsius temperature to its Fahrenheit equivalent:

How can we fix it? double c = 100; double f = 9.0 / 5 * c + 32; // 212.0 1.8

Convert 100° Celsius temperature to its Fahrenheit equivalent:

How can we fix it? double c = 100; double f = **9.0** / 5 * c + 32; // 212.0 **1.8**

> * You can fix this problem by converting the fraction to a **double**, either by inserting decimal points or by using a type cast

Practice

- 5 + 3 / 2 4
- 15 / 2.0 + 6
- 1 * 2 + 3 * 5 % 4
- "abc" + 1 + 2
- "abc" + (1 + 2)

Practice

- 5 + 3 / 2 4
- 15 / 2.0 + 6
- 1*2+3*5%4
- "abc" + 1 + 2
- "abc" + (1 + 2)

2

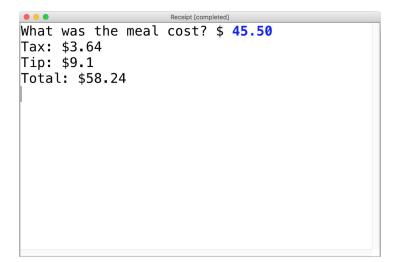
Practice

- 5 + 3 / 2 4
- 15 / 2.0 + 6
- 1 * 2 + 3 * 5 % 4
- "abc" + 1 + 2
- "abc" + (1 + 2)

2 13.5

Practice

- 5 + 3 / 2 4
- 15/2.0+6
- 1 * 2 + 3 * 5 % 4
- "abc" + 1 + 2
- "abc" + (1 + 2)


2 13.5 5 "abc12" "abc3"

Plan for Today

- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt

Practice: Receipt Program

- Let's write a ConsoleProgram that calculates the tax, tip and total bill for us at a restaurant.
- The program should ask the user for the subtotal, and then calculate and print out the tax, tip and total.

What's the pseudocode?

•••	Receipt [completed]
What was the meal Tax: \$3.64 Tip: \$9.1 Total: \$58.24	

What's the pseudocode?

What was the meal cost? \$ 45.50 Tax: \$3.64 Tip: \$9.1 Total: \$58.24		Receipt [completed]
	Tax: \$3.64 Tip: \$9.1	cost? \$ 45.50

What's the Pseudocode?

Ask user for meal cost (store in variable) Calculate tax (make variable!) Calculate tip (make variable) Calculate total (make variable) Print out tax, tip, and total

Let's Code It!

Practice: Receipt Program

```
public class Receipt extends ConsoleProgram {
    public void run() {
        double subtotal = readDouble("Meal cost? $");
        double tax = subtotal * 0.08;
        double tip = subtotal * 0.20;
        double total = subtotal + tax + tip;
        println("Tax: $" + tax);
        println("Tip: $" + tip);
        println("Total: $" + total);
    }
```


- Bye, Karel!
- Console programs
- Variables
- Expressions
- Practice: Receipt

Next time: Control flow in Java

[Extra] More on Precedence

- precedence: Order in which operators are evaluated.
 - Generally operators evaluate left-to-right.
 - 1 2 3 is (1 2) 3 which is -4
 - \circ But * / % have a higher level of precedence than + -
 - 1 + 3 * 4 is 13 6 + 8 / 2 * 3 6 + 4 * 3 6 + 12 is 18
 - Parentheses can alter order of evaluation, but spacing does not:
 (1 + 3) * 4 is 16

1+3 * 4-2 is 11

[Extra] String Concatenation

• string concatenation: Using + between a string and another value to make a longer string.

"hello" + 42	is "hello42"
1 + "abc" + 2	is "1abc2"
"abc" + 1 + 2	is "abc12"
1 + 2 + "abc"	is "3abc"
"abc" + 9 * 3	is "abc27"
"1" + 1	is "11"
4 - 1 + "abc"	is "3abc"

• Use + to print a string and an expression's value together.

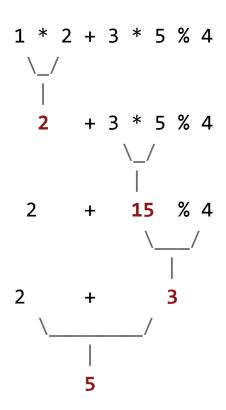
println("Average: " + (95.1 + 71.9) / 2); // Output: Average: 83.5

[Extra] Practice

- 5 + 3 / 2 4
- 15 / 2.0 + 6
- 1*2+3*5%4
- "abc" + 1 + 2
- "abc" + (1 + 2)

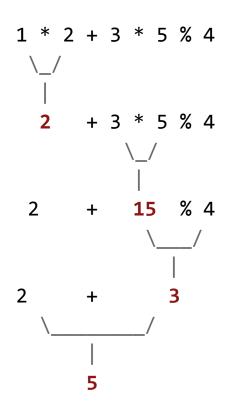
[Extra] Practice

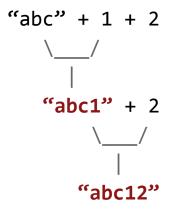
- 5 + 3 / 2 4
- 15/2.0+6
- 1*2+3*5%4
- "abc" + 1 + 2
- "abc" + (1 + 2)

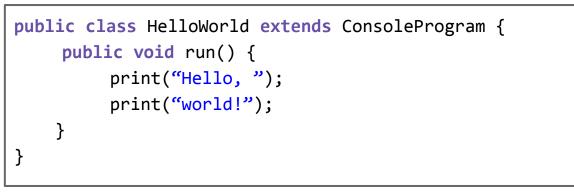

2 13.5 5 "abc12" "abc3"

[Extra] Precedence Examples

1 * 2 + 3 * 5 % 4


"abc" + 1 + 2


[Extra] Precedence Examples


"abc" + 1 + 2

[Extra] Precedence Examples

[Extra] Print

Same as println, but does not go to the next line.

[Extra] Escape Sequences

- **escape sequence**: A special sequence of characters used to represent certain special characters in a string.
 - \t tab character
 - \n new line character
 - \" quotation mark character
 - \\ backslash character

• Example:

println("\\hello\nhow\tare \"you\"?\\\\");

• Output:

\hello

how are "you"?\\