Methods, Parameters, and Scope

Lecture 6

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Announcements

e Assignment 1is due at T0am tomorrow morning.
o Practice submitting today to make sure you know how to do it!

e No lecture or sections Thursday for 4th of July.
o If your section in cancelled, please try to attend a Wednesday
section or Friday'’s section (11:30am in Skilling Auditorium)

e No LalR Wednesday, July 3rd due to Holiday

Announcements

e Quick Note: If you joined the class late, you will receive
your lecture assignments for Lecture Feedback on
Monday, July 8th.

Duke, the Java mascot!

Hil My name is Duke!

/

Plan for Today

Review: Shorthand Operators, Constants, If, While, For
Remember Methodse

Making a Sandwich

A Variable Love Story

Review: Shorthand Operators

Shorthand: Equivalent Longer Version:

// +, -, /, *, % any value

variable += value; variable = variable + value;
X -= 3; X =X - 3;

y /=5; y=y/5;

z *= someValue; z = z * someValue;

k %= 10; k = k % 10;

// add or subtract exactly 1
X++; X =X+ 1;
y--5 y =y -1;

Review: Constants

public class ReceiptForFive extends ConsoleProgram {

private static final double TAX RATE = 0.08;

private static final double TIP_RATE = 0.2;

public void run() {
double subtotall = readDouble("Meal cost? $");
double taxl = subtotal * TAX RATE;
double tipl = subtotal * TIP RATE; much better
double totall = subtotall + taxl + tipil; //
println("Total for person 1: $" + totall);

double subtotal5 = readDouble("Meal cost? $");
double tax5 = subtotal * TAX RATE;

double tip5 = subtotal * TIP RATE;

double total5 = subtotall + taxl + tipil;
println("Total for person 5: $" + total5);

Review: Relational Operators

Operator Meaning Example Value
== equals 1+1==2 true
I= does not equal 3.2 1= 2.5 true
< less than 10 < 5 false
> greater than 10 > 5 true
<= less than or equal to 126 <= 100 false
>= greater than orequalto | 5.9 >= 5.0 true

*all have equal precedence
8
O

Review: Sentinel Loops

// fencepost pr‘oblem' Ask for # Update sum Ask for # Update sum Ask for #

// ask for number - post
// add number to sum - fence

int = 0;
int = readInt("Enter a number: ");
while (I= -1) {

4= .

J

= readInt("Enter a number: ");
}

println("Sum is " +);

Review: Using the For Loop Variable

// Adds up the numbers 1 through 42
int sum = O;
for (int 1 = 1; 1 <= 42; i++) {
sum += 1i;
}

println(“Sum is »” + sum);

| have a question...

/

Making Sandwiches

Would someone make me a
sandwich, please?

/

Making Sandwiches

Let’'s make a method that will make Duke a sandwich!

Methods

A method is a set of new | /* Method description.
. . , * Pre: What we assume is true beforehand.
Insfructions we've

* Post: What we promise is true afterwards.

created! -
private void nameOfMethod(){

Example of a comment
explaining Pre and Post
conditions.

// commands go in here!

Making Sandwiches

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich
*/

private void makeASandwich(){

Making Sandwiches

Pretend we've added a new
primitive variable type called “food”.

Making Sandwiches

By using parameters we can tell our
method what the ingredients for our
sandwich are!

food bread, food veg, food protein, food spread

Making Sandwiches

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

}

Making Sandwiches

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){
food sandwich = bread + veg + protein + spread + bread;

Making Sandwiches

Wait, but you never gave
me the sandwich. |

/

Making Sandwiches

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){
food sandwich = bread + veg + protein + spread + bread;

21

Making Sandwiches

return sandwich;BY Using a return statement a method
can give back, or return, information
to the rest of your codel

22

Making Sandwiches

Since our method is returning
information, it's no longer void.
We change void to the type of

data we are returning!
food

return sandwich;

23

Making Sandwiches

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private food makeASandwich(food bread, food veg, food protein, food spread){
food sandwich = bread + veg + protein + spread + bread;

return sandwich;

24

Making Sandwiches

Thanks! =7

/

Methods w/ Parameters and Return Statements

/* We will do x, y, and z actions and return methodType data
* Pre: What we assume is true beforehand.
* Post: What we promise is true afterwards.

*/
visibility methodType methodName(paramType paramName){

commands;

return dataThatIsMethodType;

26

Methods w/ Parameters and Return Statements

1 2 3
1 |Visibility: visibility methodType methodName(paramType paramName){
Usually public or private
commands;
Types:
2 I methodType is the type of data 2 |return dataThatIsMethodType;

returned by the method. This is }
void when the method
doesn’t return any data.

3 |[paramType is the type of data
that particular parameter is.
Parameters are information
the method needs in order for
it fo work!

27

Explained Another Way...

A method is like a recipe. You give it a nhame and tell us what type of thing
it will make!

The parameters are the ingredients you need to make it.
You have to return something of the same type that the recipe promised.

If something’s the wrong type, you're missing ingredients, the recipe
promised a cake, but you return spaghetti... something is seriously wrong
with your recipel

28

Explained Another Way...

A method is like a recipe. You give it a nhame and tell us what type of thing
it will make! ' A

The parameters are the = 7 4&

You have to return s /f the recipe promised.

If something’s the wrong typg, — _-...g Ingredients, the recipe
promised a cake, but you return spaghetti... something is seriously wrong
with your recipe!

29

A Few Examples

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

30

A Few Examples

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

31

A Few Examples

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

[NON VoidExample

32

A Few Examples

private void printHello(){
println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

[NON VoidExample

hello world

33

A Few Examples

private void printHello(){

println(“hello world”);

println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

[NON VoidExample

hello world
I'm a void method, so I don’t return any datal!

34

A Few Examples

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

[NON VoidExample

hello world
I'm a void method, so I don’t return any datal!
I just do an action.

35

A Few Examples

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

36

A Few Examples

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){

double average =|calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

private double calculateAverage(/double numl|, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, |double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

I can also do actions!

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2;

}

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = |numl + num2; 5.0 +#+ 10.0
return sum / 2;

}

[NON) ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2; 15.0
return sum / 2;
} sum

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 5.0
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); numl

}

10.0
private double calculateAverage(double numl, double num2){

println(“I can also do actions!”); num2
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2; 15.0
return sum / 2;|// This will equal 7.5

} sum

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){

double average =
println(“The average is: ” + average);

}

calculateAverage(5, 10);

private double calculateAverage(double numl, double num2){
println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum =

numl + num2;

return sum / 2; // This will equal 7.5

5.0

numl

10.0

num2

15.0

sum

ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 7.5
double average =|calculateAverage(5, 10); *
println(“The average is: ” + average); calculateAverage(5, 10)

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2; // This will equal 7.5

}

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 7.5
double average = calculateAverage(5, 10); *
println(“The average is: ” + average); average

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2; // This will equal 7.5

}

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

public void run(){ 7.5
double average = calculateAverage(5, 10); *
lprintln(“The average is: ” + average);| average

}

private double calculateAverage(double numl, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = numl + num2;
return sum / 2; // This will equal 7.5

}

| NON ParameterReturnExample [completed]

I can also do actions!
I also HAVE to return a double because that’s the method type!
The average is 7.5

Now, Time for a Story

Now, Time for a Story

It’'s time to hear a Variable Love Story.

| love Love Stories...

%

&
4

54

A Variable Love Story

public void run(){
int romeo = 18;

romeo was lonely and looking

for love...
}

55

A Variable Love Story

What's this2 That sounds public void run(){
int romeo = 18;
grec:’r! findRomance();
}

*Like a dating site, but for variables

56
O

A Variable Love Story

“But, soft! what light through yonder window
breaks?

It is the east, and Juliet is the sun.”

~ romeo, probably

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

57

A Variable Love Story

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

}

romeo cannot be resolved to a variable????

58

A Variable Love Story

romeo cannot be resolved to | Pubtic void run(){

int romeo = 18;

a variable???? findRomance();
}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

59

A Variable Love Story

What about trueLovee?e?

¢

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelove = romeo + juliet;

60

A Variable Love Story

romeo only exists between public vold run(){]
those two brackets! FindRomance();

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

61

A Variable Love Story

romeo only exists between public void run(){]
int romeo = 18;

those two brackets! findRomance();
Once we enter findRomance, |private void findRomance(){
romeo essentially disappears. int Jullet = 13;

int truelove = romeo + juliet;

How can we make romeo
exist inside of findRomance?

62

A Variable Love Story

What about using
parameterss

/

A Variable Love Story

We'll add a parameter to
findRomance!

This means findRomance int r
needs more information (aka
an extra ingredient) in order -
to work.

64

A Variable Love Story

At the beginning of the
code, we'll pass romeo Iinto romeo
our findRomance method.

int r

Now, our parameter r will be
equal to what romeo was =lr + juliet
equal 1ol

So,r + juliet is essentially
equal to romeo + juliet.

65

A Variable Love Story

What does this mean? public void run(){

int romeo = 18;

findRomance(romeop;

}

private void findRomance(int r){
int juliet = 13;

int truelove =|r + juliet}

66

A Variable Love Story

trueLove atf last!

<

\ 4

\ 4

*We do not condone relationships of 13 and 18 year
olds. Blame Shakespeare.

public void run(){

int romeo = 18;
findRomance(romeo);

}

private void findRomance(int r){
int juliet = 13;

int truelLove = r + juliet;

67

A Variable Love Story: Scope

Scope is the idea that
variables only exist inside a
certain block of code.

In Java, a variable is born
when it is declared.

A variable terminates when it
hits the ending bracket of the
code block in which it was
declared.

public void run(){
int newvariable = @; // I am born!

} // I hope I haven’t bored you. Goodbye.

68

A Variable Love Story: Scope

while (conditionAIsTrue){

The variable only exists from
Its declaration to the end of if (conditionBIsTrue){
ITs current code block.

int newVariable = @; // I am born!

[3]// 1°m bored with it all. Goodbye.

69

A Variable Love Story: Scope

while (conditionAIsTrue){

This won't work!

if (conditionBIsTrue){

int newVariable = @; // I am born!

[}]// 1°m bored with it all. Goodbye.

println(newVariable);

70

A Variable Love Story: Scope

while (conditionAIsTrue){

It doesn’t exist before it's
declared, and it doesn’t
exist outside of its current
code block!

if (conditionBIsTrue){

int newVariable = @; // I am born!

[3]// 1°m bored with it all. Goodbye.

rtininenyariabie)s

71

A Variable Love Story: Scope

Why can’t we just declare
romeo outside of any brackets?

int romeo = 18;

public void run(){
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

72

A Variable Love Story: Scope

int romeo = 18;

Why can’t we just declare
romeo outside of any bracketse | public void run(){

findRomance();

1. It's harder to understand. }

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

73

A Variable Love Story: Scope

Why can’t we just declare
romeo outside of any brackets?

1. It's harder to understand.
2. More likely to accidentally
infroduce bugs.

int romeo = 18;

public void run(){
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

A Variable Love Story: Scope

Why can’t we just declare
romeo outside of any brackets?

1. It's harder to understand.

2. More likely to accidentally
infroduce bugs.

3. We don't get rid of romeo
when we're done with
romeo.

int romeo = 18;

public void run(){
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

}

75

A Variable Love Story: Scope

Don’t do this!

int romeo = 18;

public void run(){
findRomance();

}

private void findRomance(){
int juliet = 13;

int truelLove = romeo + juliet;

76

A Variable Love Story: Scope

. ublic void run
Do this! S]
int romeo = 18;
findRomance(romeo);

t's easier to read and debug, |?

and we remove variables from | private void findRomance(int r){

memory when we're done with int juliet = 13;
TYWEBFT]! int truelLove = r + juliet;

77

Plan for Today

Review: Shorthand Operators, Constants, If, While, For
Remember Methodse

Making a Sandwich

A Variable Love Story

78

Reminders

e Assignment 1is due at T0am tomorrow morning.
o Practice submitting today to make sure you know how to do it!

e No lecture or sections Thursday for 4th of July.

o If your section in cancelled, please try to attend a Wednesday
section or Friday'’s section (11:30am in Skilling Auditorium)

e No LalR Wednesday, July 3rd due to Holiday

79

