
Methods, Parameters, and Scope

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 6

Announcements

● Assignment 1 is due at 10am tomorrow morning.
○ Practice submitting today to make sure you know how to do it!

● No lecture or sections Thursday for 4th of July.
○ If your section in cancelled, please try to attend a Wednesday

section or Friday’s section (11:30am in Skilling Auditorium)
● No LaIR Wednesday, July 3rd due to Holiday

2

Announcements

● Quick Note: If you joined the class late, you will receive
your lecture assignments for Lecture Feedback on
Monday, July 8th.

3

Duke, the Java mascot!

4

Hi! My name is Duke!

Plan for Today

● Review: Shorthand Operators, Constants, If, While, For
● Remember Methods?
● Making a Sandwich
● A Variable Love Story

5

Review: Shorthand Operators
Shorthand: Equivalent Longer Version:
// +, -, /, *, % any value

variable += value; variable = variable + value;

x -= 3; x = x - 3;

y /= 5; y = y / 5;

z *= someValue; z = z * someValue;

k %= 10; k = k % 10;

// add or subtract exactly 1

x++; x = x + 1;

y--; y = y - 1;
6

Review: Constants
public class ReceiptForFive extends ConsoleProgram {

private static final double TAX_RATE = 0.08;

private static final double TIP_RATE = 0.2;

public void run() {

double subtotal1 = readDouble("Meal cost? $");

double tax1 = subtotal * TAX_RATE;

double tip1 = subtotal * TIP_RATE;

double total1 = subtotal1 + tax1 + tip1;

println("Total for person 1: $" + total1);

...

double subtotal5 = readDouble("Meal cost? $");

double tax5 = subtotal * TAX_RATE;

double tip5 = subtotal * TIP_RATE;

double total5 = subtotal1 + tax1 + tip1;

println("Total for person 5: $" + total5);

}

} 7

much better

Review: Relational Operators

8

Operator Meaning Example Value

== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

* all have equal precedence

Review: Sentinel Loops
// fencepost problem!

// ask for number - post

// add number to sum - fence

int sum = 0;

int num = readInt("Enter a number: ");

while (num != -1) {

sum += num;

num = readInt("Enter a number: ");

}

println("Sum is " + sum);

9

Ask for # Update sum Ask for # Update sum Ask for #

Review: Using the For Loop Variable

10

// Adds up the numbers 1 through 42

int sum = 0;

for (int i = 1; i <= 42; i++) {

sum += i;

}

println(“Sum is ” + sum);

???

11

I have a question...

Making Sandwiches

12

Would someone make me a
sandwich, please?

Making Sandwiches

13

Let’s make a method that will make Duke a sandwich!

Methods

A method is a set of new
instructions we’ve
created!

Example of a comment
explaining Pre and Post
conditions.

14

/* Method description.

* Pre: What we assume is true beforehand.

* Post: What we promise is true afterwards.

*/

private void nameOfMethod(){

// commands go in here!

}

Making Sandwiches

15

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich

*/

private void makeASandwich(){

}

Making Sandwiches

16

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich

*/

private void makeASandwich(){

}

Pretend we’ve added a new
primitive variable type called “food”.

Making Sandwiches

17

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

}

By using parameters we can tell our
method what the ingredients for our

sandwich are!

Making Sandwiches

18

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

}

Making Sandwiches

19

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

food sandwich = bread + veg + protein + spread + bread;

}

Making Sandwiches

20

Wait, but you never gave
me the sandwich. :(

Making Sandwiches

21

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

food sandwich = bread + veg + protein + spread + bread;

}

Making Sandwiches

22

/* We will make Java a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich

*/

private void makeASandwich(food bread, food veg, food protein, food spread){

food sandwich = bread + veg + protein + spread + bread;

return sandwich;
}

By using a return statement a method
can give back, or return, information

to the rest of your code!

Making Sandwiches

23

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich

*/

private food makeASandwich(food bread, food veg, food protein, food spread){

food sandwich = bread + veg + protein + spread + bread;

return sandwich;
}

Since our method is returning
information, it’s no longer void.
We change void to the type of

data we are returning!

Making Sandwiches

24

/* We will make Duke a sandwich.

* Pre: n/a

* Post: We will have a completed sandwich.

*/

private food makeASandwich(food bread, food veg, food protein, food spread){

food sandwich = bread + veg + protein + spread + bread;

return sandwich;
}

Making Sandwiches

25

Thanks! 🥪

Methods w/ Parameters and Return Statements

26

/* We will do x, y, and z actions and return methodType data

* Pre: What we assume is true beforehand.

* Post: What we promise is true afterwards.

*/

visibility methodType methodName(paramType paramName){

commands;

return dataThatIsMethodType;
}

Methods w/ Parameters and Return Statements

27

visibility methodType methodName(paramType paramName){

commands;

return dataThatIsMethodType;
}

Visibility:
Usually public or private

Types:
methodType is the type of data
returned by the method. This is
void when the method
doesn’t return any data.

paramType is the type of data
that particular parameter is.
Parameters are information
the method needs in order for
it to work!

1

1

2

2

3

3

2

Explained Another Way...

A method is like a recipe. You give it a name and tell us what type of thing
it will make!

The parameters are the ingredients you need to make it.

You have to return something of the same type that the recipe promised.

If something’s the wrong type, you’re missing ingredients, the recipe
promised a cake, but you return spaghetti… something is seriously wrong
with your recipe!

28

Explained Another Way...

A method is like a recipe. You give it a name and tell us what type of thing
it will make!

The parameters are the ingredients you need to make it.

You have to return something of the same type that the recipe promised.

If something’s the wrong type, you’re missing ingredients, the recipe
promised a cake, but you return spaghetti… something is seriously wrong
with your recipe!

29

A Few Examples

30

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

A Few Examples

31

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

32

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

A Few Examples

33

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

hello world

A Few Examples

34

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

hello world
I’m a void method, so I don’t return any data!

A Few Examples

35

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

hello world
I’m a void method, so I don’t return any data!
I just do an action.

A Few Examples

36

private void printHello(){

println(“hello world”);
println(“I’m a void method, so I don’t return any data!”);
println(“I just do an action.”);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

37

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

38

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

39

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

40

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

41

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

A Few Examples

42

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

5.0

A Few Examples

43

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

5.0

num2

10.0

A Few Examples

44

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

num2

I can also do actions!

5.0

10.0

A Few Examples

45

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

num2

I can also do actions!
I also HAVE to return a double because that’s the method type!

5.0

10.0

A Few Examples

46

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

num2

I can also do actions!
I also HAVE to return a double because that’s the method type!

5.0 + 10.0

5.0

10.0

A Few Examples

47

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2;

}

num1

num2

I can also do actions!
I also HAVE to return a double because that’s the method type!

sum

15.0

5.0

10.0

A Few Examples

48

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2; // This will equal 7.5

}

num1

num2

I can also do actions!
I also HAVE to return a double because that’s the method type!

sum

15.0

5.0

10.0

A Few Examples

49

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2; // This will equal 7.5

}

num1

num2

I can also do actions!
I also HAVE to return a double because that’s the method type!

sum

15.0

5.0

10.0

A Few Examples

50

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2; // This will equal 7.5

}

calculateAverage(5, 10)

7.5

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

51

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2; // This will equal 7.5

}

average

7.5

I can also do actions!
I also HAVE to return a double because that’s the method type!

A Few Examples

52

public void run(){

double average = calculateAverage(5, 10);
println(“The average is: ” + average);

}

private double calculateAverage(double num1, double num2){

println(“I can also do actions!”);
println(“I also HAVE to return a double because that’s the method type!”);

double sum = num1 + num2;
return sum / 2; // This will equal 7.5

}

average

7.5

I can also do actions!
I also HAVE to return a double because that’s the method type!
The average is 7.5

Now, Time for a Story

53

Now, Time for a Story

54

It’s time to hear a Variable Love Story.
I love Love Stories...

A Variable Love Story

55

public void run(){

int romeo = 18;

}

romeo was lonely and looking
for love...

A Variable Love Story

56

public void run(){

int romeo = 18;
findRomance();

}

What’s this? That sounds
great!

*Like a dating site, but for variables

A Variable Love Story

57

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

“But, soft! what light through yonder window
breaks?
It is the east, and Juliet is the sun.”
~ romeo, probably

A Variable Love Story

58

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

romeo cannot be resolved to a variable????

A Variable Love Story

59

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

romeo cannot be resolved to
a variable????

A Variable Love Story

60

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

What about trueLove???

A Variable Love Story

61

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

romeo only exists between
those two brackets!

A Variable Love Story

62

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

romeo only exists between
those two brackets!

Once we enter findRomance,
romeo essentially disappears.

How can we make romeo
exist inside of findRomance?

A Variable Love Story

63

What about using
parameters?

A Variable Love Story

64

public void run(){

int romeo = 18;
findRomance();

}

private void findRomance(int r){

int juliet = 13;

int trueLove = romeo + juliet;
}

We’ll add a parameter to
findRomance!

This means findRomance
needs more information (aka
an extra ingredient) in order
to work.

A Variable Love Story

65

public void run(){

int romeo = 18;
findRomance(romeo);

}

private void findRomance(int r){

int juliet = 13;

int trueLove = r + juliet;
}

At the beginning of the
code, we’ll pass romeo into
our findRomance method.

Now, our parameter r will be
equal to what romeo was
equal to!

So, r + juliet is essentially
equal to romeo + juliet.

A Variable Love Story

66

public void run(){

int romeo = 18;
findRomance(romeo);

}

private void findRomance(int r){

int juliet = 13;

int trueLove = r + juliet;
}

What does this mean?

A Variable Love Story

67

public void run(){

int romeo = 18;
findRomance(romeo);

}

private void findRomance(int r){

int juliet = 13;

int trueLove = r + juliet;
}

trueLove at last!

*We do not condone relationships of 13 and 18 year
olds. Blame Shakespeare.

A Variable Love Story: Scope

68

public void run(){

int newVariable = 0; // I am born!
...
...
...

} // I hope I haven’t bored you. Goodbye.

Scope is the idea that
variables only exist inside a
certain block of code.

In Java, a variable is born
when it is declared.

A variable terminates when it
hits the ending bracket of the
code block in which it was
declared.

A Variable Love Story: Scope

69

The variable only exists from
its declaration to the end of
its current code block.

while (conditionAIsTrue){

if (conditionBIsTrue){

 ...

int newVariable = 0; // I am!
...

} // I’m bored with it all. Goodbye.

}

int newVariable = 0; // I am born!
...

A Variable Love Story: Scope

70

This won’t work!
while (conditionAIsTrue){

if (conditionBIsTrue){

 ...

int newVariable = 0; // I am!
...

} // I’m bored with it all. Goodbye.

println(newVariable);
}

int newVariable = 0; // I am born!
...

A Variable Love Story: Scope

71

It doesn’t exist before it’s
declared, and it doesn’t
exist outside of its current
code block!

while (conditionAIsTrue){

if (true){

...

int newVariable = 0; // I am born!
...

} // I’m bored with it all. Goodbye.

}

while (conditionAIsTrue){

if (conditionBIsTrue){

...

println(newVariable);

A Variable Love Story: Scope

72

int romeo = 18;

public void run(){

findRomance();
}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

Why can’t we just declare
romeo outside of any brackets?

A Variable Love Story: Scope

73

int romeo = 18;

public void run(){

findRomance();
}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

Why can’t we just declare
romeo outside of any brackets?

1. It’s harder to understand.

A Variable Love Story: Scope

74

int romeo = 18;

public void run(){

findRomance();
}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

Why can’t we just declare
romeo outside of any brackets?

1. It’s harder to understand.
2. More likely to accidentally

introduce bugs.

A Variable Love Story: Scope

75

int romeo = 18;

public void run(){

findRomance();
}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

Why can’t we just declare
romeo outside of any brackets?

1. It’s harder to understand.
2. More likely to accidentally

introduce bugs.
3. We don’t get rid of romeo

when we’re done with
romeo.

A Variable Love Story: Scope

76

int romeo = 18;

public void run(){

findRomance();
}

private void findRomance(){

int juliet = 13;

int trueLove = romeo + juliet;
}

Don’t do this!

A Variable Love Story: Scope

77

public void run(){

int romeo = 18;
findRomance(romeo);

}

private void findRomance(int r){

int juliet = 13;

int trueLove = r + juliet;
}

Do this!

It’s easier to read and debug,
and we remove variables from
memory when we’re done with
them!

Plan for Today

● Review: Shorthand Operators, Constants, If, While, For
● Remember Methods?
● Making a Sandwich
● A Variable Love Story

78

Reminders

● Assignment 1 is due at 10am tomorrow morning.
○ Practice submitting today to make sure you know how to do it!

● No lecture or sections Thursday for 4th of July.
○ If your section in cancelled, please try to attend a Wednesday

section or Friday’s section (11:30am in Skilling Auditorium)
● No LaIR Wednesday, July 3rd due to Holiday

79

