
Sarai Gould & Laura Cruz-Albrecht Section #4
CS 106A July 17, 2019

Section Handout #4: Strings and Files
Portions of this handout by Eric Roberts, Mehran Sahami, Marty Stepp, Patrick Young, and Jeremy Keeshin

1. Adding commas to numeric strings (Chapter 8, Exercise 13, page 290)
When large numbers are written out on paper, it is traditional—at least in the United
States—to use commas to separate the digits into groups of three. For example, the number
one million is usually written in the following form:

1,000,000

To make it easier for programmers to display numbers in this fashion, implement a method

private String addCommasToNumericString(String digits)

that takes a string of decimal digits representing a number and returns the string formed by
inserting commas at every third position, starting on the right. For example, if you were to
execute the main program

public void run() {
 String digits = readLine("Enter a numeric string: ");
 while (digits.length() > 0) {
 println(addCommasToNumericString(digits));
 digits = readLine("Enter a numeric string: ");
 }
}

your implementation of the addCommasToNumericString method should have the
following behavior:

 addCommasToNumericString(“147”) returns “147”
 addCommasToNumericString(“2014”) returns “2,014”

 addCommasToNumericString(“37897987”) returns “37,897,987”

 – 2 –

2. Deleting characters from a string
Write a method

private String removeAllOccurrences(String str, char ch)

that removes all occurrences of the character ch from the string str. For example, your
method should return the values shown:

removeAllOccurrences("This is a test", 't') returns "This is a es"
removeAllOccurrences("Summer is here!", 'e') returns "Summr is hr!"
removeAllOccurrences("---0---", '-') returns "0"

3. Converting a string to alternating capital letters
Write a method

 private String altCaps(String str)

which converts a string to alternating capital letters, meaning you alternate between
uppercase and lowercase. This style of typing was, like, so fly on the internet in the late
90s. For example:

 altCaps("hello") returns "hElLo"
 altCaps("CS106A rocks my socks!") returns "cS106a RoCkS mY sOcKs!"

Note that characters that are not letters are not changed and do not affect the alternating
sequence of uppercase and lowercase letters.

 – 3 –

4. Tracing method execution
For the program below, show what output is produced by the program when it runs, and
draw the trace of what each variable contains as the program runs.

/*
 * File: ConsoleMystery.java
 * --------------------------
 * This program doesn't do anything useful and exists only to test
 * your understanding of method calls and parameter passing.
 */

import acm.program.*;

public class ConsoleMystery extends ConsoleProgram {

 public void run() {
 ghost(13);
 }

 private void ghost(int x) {
 int y = 0;
 for (int i = 1; i < x; i *= 2) {
 y = witch(y, skeleton(x, i));
 }

 println("ghost: x = " + x + ", y = " + y);
 }

 private int witch(int x, int y) {
 x = 10 * x + y;
 println("witch: x = " + x + ", y = " + y);
 return x;
 }

 private int skeleton(int x, int y) {
 return x / y % 2;
 }
}

 – 4 –

5. Class Presidents
Somehow, the vote tallies for sophomore and junior class presidents got mixed up. The file
format looks like the following:

Xavier s 25 Sophie j 12 Ashwin j 44 Isaac s 30 Tyra s 60 Russ
s 23 Aiko j 20

The file repeats the pattern name year votes. The year is either “s” for sophomore or
“j” for junior.

Your program should read the file in, output the candidate in each presidential race with
the most votes, and how many votes they got.

Specifically, if this file were named candidates.txt, your program should output the
following:

Sophomore Class President: Tyra (60 votes)

Junior Class President: Ashwin (44 votes)

Recall the syntax for creating a Scanner from a file:

Scanner input = new Scanner(new File("candidates.txt"));

6. Pig Latin
Write a method named pigLatin that accepts as a parameter a Scanner representing an
input file. Your method should, preserving line breaks, print out the input file's text in a
simplified version of Pig Latin, a (silly) English variant where the first letter of each word
is moved to the end. The rules for translating a word to Pig Latin are as follows:

If the word starts with a vowel (a-e-i-o-u), simply append “yay” to the end of the word.

English Pig Latin
elephant elephantyay
aardvark aardvarkyay
easel easelyay

If the word starts with a consonant, move the consonant to the end, and append "ay".

English Pig Latin
switch witchsay
welcome elcomeway

As an overall example, if the input file hamilton.txt contains the following text:

i am not

throwing away my shot

 – 5 –

We might call your method as follows:

Scanner input = new Scanner(new File("hamilton.txt"));
pigLatin(input);

In this case, your method should print the following console output:

iyay amyay otnay
hrowingtay awayyay ymay hotsay

To extend this program further, you can optionally implement the more advanced Pig Latin
translation rules for words starting with constants. Specifically, if the word starts with a
constant, move all constants up to the first vowel (not just the first consonant) to the end,
and append “ay”.

English Pig Latin
switch itchsway
string ingstray

7. NegativeSum.

Write a method negativeSum that accepts a Scanner reading from a file containing a series
of integers. Your method should print a message to the console indicating whether the sum
starting from the first number is ever negative. You should also return true if a negative
sum can be reached and false if not. For example, suppose the file contains the following
text:

38 4 19 -27 -15 -3 4 19 38

Your method would consider the sum of just one number (38), the sum of the first two
numbers (38 + 4), the sum of the first three numbers (38 + 4 + 19), and so on up to the end.
None of these sums is negative, so the method should return false after printing the
following message to the console: no negative sum

Suppose instead that the file contains the following numbers:

14 7 -10 9 -18 -10 17 42 98

In this case, the method finds that a negative sum (-8) is reached after adding 6 numbers
together (14 + 7 + -10 + 9 + -18 + -10). It should return true, indicating that a negative sum
can be reached, after printing the following message to the console: -8 after 6 steps

