Sarai Gould & Laura Cruz-Albrecht Section #6
CS 106A August 2, 2019

Solutions to Section #6

1. How Unique!

import acm.program.*;
import java.util.¥*;

public class UniqueNames extends ConsoleProgram {

public void run() {
ArraylList<String> list = new ArrayList<String>();
while (true) {
String name = readLine ("Enter name: ") ;
if (name.equals("")) {
break;
}
if (!'list.contains(name)) {
list.add (name) ;
}
}

println("Unique name list contains:");
printlList(list);
}

/* Prints out contents of Arraylist, one element per line */
private void printList (ArrayList<String> list) ({
for(int i = 0; i < list.size(); i++) {
println(list.get(i));
}

2. Remove Even Length

public void removeEvenLength (ArrayList<String> list) ({
for (int i = list.size() - 1; i >= 0; i--) {
if (list.get(i).length() % 2 == 0) {
list.remove (i) ;

}

3. Switch Pairs

private void switchPairs (ArrayList<String> list) {
for (int i = 0; i < list.size() - 1; i += 2) {
String first = list.remove (i) ;
list.add(i + 1, first);

4. Name Counts

/* File: CountNames.java

* This program shows an example of using a HashMap. It reads a
* list of names from the user and list out how many times each name
* appeared in the list.
*/
import acm.program.¥*;
import java.util.*;

public class CountNames extends ConsoleProgram {
public void run() {
HashMap<String, Integer> nameMap = new
HashMap<String, Integer>() ;
readNames (nameMap) ;
printMap (nameMap) ;
}

/*
* Reads a list of names from the user, storing names and how many
* times each appeared in the map that is passed in as a parameter.
*/
private void readNames (HashMap<String, Integer> map) {
while (true) {
String name = readLine ("Enter name: ") ;
if (name.equals("")) {
break;

}

/* See if that name previously appeared in the map. Update
* count if it did, or create a new count if it didn't.
*/

if (map.containsKey (name)) ({

// auto-unboxing: gets an int instead of Integer

int oldCount = map.get (name) ;

// auto-boxing: convert int to Integer automatically
map.put (name, oldCount + 1);

} else {

// auto-boxing: convert int to Integer automatically
map.put (name, 1);

}
/*

* Prints out list of entries (and associated counts) from the map
* that is passed in as a parameter.
*/
private void printMap (HashMap<String,Integer> map) {
for (String key : map.keySet()) {
int count = map.get(key); // auto-unboxing
println("Entry [" + key + "] has count " + count);

5. Mutual Friends

private HashMap<String, Integer> mutualFriends (
HashMap<String, Integer> phonebookl,
HashMap<String, Integer> phonebook2) {

HashMap<String, Integer> result =
new HashMap<String, Integer>();

for (String name : phonebookl.keySet()) {
int phoneNum = phonebookl.get (name) ;
if (phonebook2.containsKey (name) &&
phoneNum == phonebook2.get (name)) {
result.put (name, phoneNum) ;
}
}

return result;

6. Reverse

private HashMap<String, Integer> reverse (HashMap<Integer, String> map) {
HashMap<String, Integer> result = new HashMap<String, Integer>();
for (int key : map.keySet()) {
String value = map.get (key) ;
result.put(value, key);
}

return result;

7. Student

// Student object reps. a Stanford student w/ name, ID, and unit count.
public class Student ({

private String name; /* The student’s name */
private int ID; /* The student’s ID number */
private double unitsEarned; /* number of units student has */

/** Constant: the number of units required for graduation */
public static final double UNITS_TO_GRADUATE = 180.0;

// Creates a new student object with given name, ID, and 0 units.
public Student (String studentName, int studentID) {
name = studentName; ID = studentID; unitsEarned = 0;

}

// Returns the name of this student.
public String getName () {
return name;

}

// Returns the ID number of this student.
public int getID() ({
return ID;

}

// Returns the number of units earned.
public double getUnits() ({
return unitsEarned;

}

// Increments the earned units by the given number of units.
public void incrementUnits (double additionalUnits) ({
unitsEarned += additionalUnits;

}

// Returns whether or not the student has enough units to graduate.
public boolean hasEnoughUnits() ({
return unitsEarned >= UNITS_ TO_ GRADUATE;

}

// Creates a string IDing this student, such as "Marty (#223)".
public String toString() ({
return name + " (#" + ID + ")";

}

8. Paper Plane Airport

/*

* File: Airport. java

* This program manages and dispatches Airplanes.

*/

import acm.program.*;
import java.util.*;

public class Airport extends ConsoleProgram {
ArrayList<Airplane> planes;

public void run() ({
planes = new Arraylist<Airplane>();

// build 3 airplanes

for (int i = 0; i < 3; i++) {
println ("Airport log: adding plane");
Airplane plane = new Airplane();
planes.add (plane) ;

}

// tell 2 to depart

for (int i = 0; i < 2; i++) {
dispatchPlane() ;

}

// build one more plane - can do this in 1 line below, or like
above

println ("Airport log: adding plane");

planes.add (new Airplane()) ;

// tell all planes to depart

while ('planes.isEmpty()) {
dispatchPlane() ;
}
}

private void dispatchPlane () ({
println("Airport log: dispatching plane");
Airplane plane = planes.get(0);

// just an example of error-checking using Airplane's "getter"
method
if (plane.isAirborne()) {
println("Airport log: ERROR - plane already airborne");
}
plane. takeOff () ;
planes.remove (0) ;

/*

* File: Airplane.java

X e e = —

* This program implements the Airplane class used by the Paper Plane
* Airport in Airport.java.

*/
public class Airplane {
private boolean airborne;

public Airplane() {
foldInHalf () ;
foldWings () ;
this.airborne = false;

}

public boolean isAirborne() ({
return airborne;

}

public void takeOff () {
System.out.println("Airplane log: dispatching plane");
this.airborne = true;

}

private void foldInHalf () ({
System.out.println("Airplane log: folded plane in half!");
}

private void foldWings () {
System.out.println("Airplane log: folded plane wings!");
}

9. Subclassing GCanvas

/*
*
*

* %k ok Ok ¥ %

*/

File: RandomCirclesCanvas.java

This GCanvas subclass adds the ability to also draw random circles.
Each circle has a randomly chosen color, a randomly chosen

radius between 5 and 50 pixels, and a randomly chosen

position on the canvas, subject to the condition that

the entire circle must fit inside the canvas without

extending past the edge.

import acm.graphics.*;
import acm.util.*;

public class RandomCirclesCanvas extends GCanvas {

private static final double MIN RADIUS = 5;
private static final double MAX RADIUS = 50;

public void drawRandomCircle() {
double r = rgen.nextDouble (MIN RADIUS, MAX RADIUS) ;
double x = rgen.nextDouble (0, getWidth() - 2 * r);
double y = rgen.nextDouble (0, getHeight() - 2 * r);
GOval circle = new GOval(x, y, 2 * r, 2 * r);
circle.setFilled(true) ;
circle.setColor (rgen.nextColor()) ;
add(circle); // adds it to ourself!

}

/* Private instance wvariable */
private RandomGenerator rgen = RandomGenerator.getInstance() ;

