
Sarai Gould & Laura Cruz-Albrecht Section #6

CS 106A August 2, 2019

Solutions to Section #6

1. How Unique!

import acm.program.*;

import java.util.*;

public class UniqueNames extends ConsoleProgram {

 public void run() {

 ArrayList<String> list = new ArrayList<String>();

 while (true) {

 String name = readLine("Enter name: ");

 if (name.equals("")) {

 break;

 }

 if (!list.contains(name)) {

 list.add(name);

 }

 }

 println("Unique name list contains:");

 printList(list);

 }

 /* Prints out contents of ArrayList, one element per line */

 private void printList(ArrayList<String> list) {

 for(int i = 0; i < list.size(); i++) {

 println(list.get(i));

 }

 }

}

2. Remove Even Length

public void removeEvenLength(ArrayList<String> list) {

 for (int i = list.size() - 1; i >= 0; i--) {

 if (list.get(i).length() % 2 == 0) {

 list.remove(i);

 }

 }

}

3. Switch Pairs

private void switchPairs(ArrayList<String> list) {

 for (int i = 0; i < list.size() - 1; i += 2) {

 String first = list.remove(i);

 list.add(i + 1, first);

 }

}

 – 2 –

4. Name Counts

/* File: CountNames.java

 * ---------------------

 * This program shows an example of using a HashMap. It reads a

 * list of names from the user and list out how many times each name

 * appeared in the list.

 */

import acm.program.*;

import java.util.*;

public class CountNames extends ConsoleProgram {

 public void run() {

 HashMap<String,Integer> nameMap = new

 HashMap<String,Integer>();

 readNames(nameMap);

 printMap(nameMap);

 }

 /*

 * Reads a list of names from the user, storing names and how many

 * times each appeared in the map that is passed in as a parameter.

 */

 private void readNames(HashMap<String,Integer> map) {

 while (true) {

 String name = readLine("Enter name: ");

 if (name.equals("")) {

 break;

 }

 /* See if that name previously appeared in the map. Update

 * count if it did, or create a new count if it didn't.

 */

 if (map.containsKey(name)) {

 // auto-unboxing: gets an int instead of Integer

 int oldCount = map.get(name);

 // auto-boxing: convert int to Integer automatically

 map.put(name, oldCount + 1);

 } else {

 // auto-boxing: convert int to Integer automatically

 map.put(name, 1);

 }

 }

 }

 /*

 * Prints out list of entries (and associated counts) from the map

 * that is passed in as a parameter.

 */

 private void printMap(HashMap<String,Integer> map) {

 for (String key : map.keySet()) {

 int count = map.get(key); // auto-unboxing

 println("Entry [" + key + "] has count " + count);

 }

 }

}

 – 3 –

5. Mutual Friends

private HashMap<String, Integer> mutualFriends(

 HashMap<String, Integer> phonebook1,

 HashMap<String, Integer> phonebook2) {

 HashMap<String, Integer> result =

 new HashMap<String, Integer>();

 for (String name : phonebook1.keySet()) {

 int phoneNum = phonebook1.get(name);

 if (phonebook2.containsKey(name) &&

 phoneNum == phonebook2.get(name)) {

 result.put(name, phoneNum);

 }

 }

 return result;

}

6. Reverse

private HashMap<String, Integer> reverse(HashMap<Integer, String> map){

 HashMap<String, Integer> result = new HashMap<String, Integer>();

 for (int key : map.keySet()) {

 String value = map.get(key);

 result.put(value, key);

 }

 return result;

}

7. Student

// Student object reps. a Stanford student w/ name, ID, and unit count.

public class Student {

 private String name; /* The student’s name */

 private int ID; /* The student’s ID number */

 private double unitsEarned; /* number of units student has */

 /** Constant: the number of units required for graduation */

 public static final double UNITS_TO_GRADUATE = 180.0;

 // Creates a new student object with given name, ID, and 0 units.

 public Student(String studentName, int studentID) {

 name = studentName; ID = studentID; unitsEarned = 0;

 }

 // Returns the name of this student.

 public String getName() {

 return name;

 }

 // Returns the ID number of this student.

 public int getID() {

 return ID;

 }

 – 4 –

 // Returns the number of units earned.

 public double getUnits() {

 return unitsEarned;

 }

 // Increments the earned units by the given number of units.

 public void incrementUnits(double additionalUnits) {

 unitsEarned += additionalUnits;

 }

 // Returns whether or not the student has enough units to graduate.

 public boolean hasEnoughUnits() {

 return unitsEarned >= UNITS_TO_GRADUATE;

 }

 // Creates a string IDing this student, such as "Marty (#223)".

 public String toString() {

 return name + " (#" + ID + ")";

 }

}

8. Paper Plane Airport

/*

 * File: Airport.java

 * ------------------

 * This program manages and dispatches Airplanes.

 */

import acm.program.*;

import java.util.*;

public class Airport extends ConsoleProgram {

 ArrayList<Airplane> planes;

 public void run() {

 planes = new ArrayList<Airplane>();

 // build 3 airplanes

 for (int i = 0; i < 3; i++) {

 println("Airport log: adding plane");

 Airplane plane = new Airplane();

 planes.add(plane);

 }

 // tell 2 to depart

 for (int i = 0; i < 2; i++) {

 dispatchPlane();

 }

 // build one more plane - can do this in 1 line below, or like

above

 println("Airport log: adding plane");

 planes.add(new Airplane());

 // tell all planes to depart

 – 5 –

 while (!planes.isEmpty()) {

 dispatchPlane();

 }

 }

 private void dispatchPlane() {

 println("Airport log: dispatching plane");

 Airplane plane = planes.get(0);

 // just an example of error-checking using Airplane's "getter"

method

 if (plane.isAirborne()) {

 println("Airport log: ERROR - plane already airborne");

 }

 plane.takeOff();

 planes.remove(0);

 }

}

/*

 * File: Airplane.java

 * ---------------------------

 * This program implements the Airplane class used by the Paper Plane

 * Airport in Airport.java.

 */

public class Airplane {

 private boolean airborne;

 public Airplane() {

 foldInHalf();

 foldWings();

 this.airborne = false;

 }

 public boolean isAirborne() {

 return airborne;

 }

 public void takeOff() {

 System.out.println("Airplane log: dispatching plane");

 this.airborne = true;

 }

 private void foldInHalf() {

 System.out.println("Airplane log: folded plane in half!");

 }

 private void foldWings() {

 System.out.println("Airplane log: folded plane wings!");

 }

}

 – 6 –

9. Subclassing GCanvas

/*

 * File: RandomCirclesCanvas.java

 * ------------------------

 * This GCanvas subclass adds the ability to also draw random circles.

 * Each circle has a randomly chosen color, a randomly chosen

 * radius between 5 and 50 pixels, and a randomly chosen

 * position on the canvas, subject to the condition that

 * the entire circle must fit inside the canvas without

 * extending past the edge.

 */

import acm.graphics.*;

import acm.util.*;

public class RandomCirclesCanvas extends GCanvas {
 private static final double MIN_RADIUS = 5;

 private static final double MAX_RADIUS = 50;

 public void drawRandomCircle() {

 double r = rgen.nextDouble(MIN_RADIUS, MAX_RADIUS);

 double x = rgen.nextDouble(0, getWidth() - 2 * r);

 double y = rgen.nextDouble(0, getHeight() - 2 * r);

 GOval circle = new GOval(x, y, 2 * r, 2 * r);

 circle.setFilled(true);

 circle.setColor(rgen.nextColor());

 add(circle); // adds it to ourself!
 }

 /* Private instance variable */
 private RandomGenerator rgen = RandomGenerator.getInstance();

}

