
Sarai Gould & Laura Cruz-Albrecht                              Section #7 
CS 106A                     August 9, 2019 

Solutions to Section #7 
Portions of this handout by Mehran Sahami, Eric Roberts, Marty Stepp, Nick Troccoli, and Julia Daniel 

1. Colored Window  
 
import acm.program.*; 
import acm.util.*; 
import java.io.*; 
import java.util.*; 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
/* This program allows the user to type a color name and have that become the 
 * background color of the window. It uses a large data file of color names. 
 */ 
public class ColoredWindow extends GraphicsProgram { 
    /* Private constants */ 
    private static final int TEXT_FIELD_WIDTH = 16; 
    private static final String COLORS_FILE = "res/colors.txt"; 
 
    /* Private fields */ 
    private JTextField colorNameEntry;      // text field used for data entry 
    private HashMap<String, Color> colors;  // color data from file 
 
    public void init() { 
        readColors(); 
        addInteractors(); 
    } 
 
    /* Adds the interactors and event listeners to the window. */ 
    private void addInteractors() { 
        add(new JLabel("Enter color: "), SOUTH); 
        colorNameEntry = new JTextField(TEXT_FIELD_WIDTH); 
        colorNameEntry.setActionCommand("Show"); 
        add(colorNameEntry, SOUTH); 
         
        add(new JButton("Show"), SOUTH); 
        add(new JButton("Random"), SOUTH); 
        addActionListeners(); 
 
        colorNameEntry.addActionListener(this); // listen for ENTER pressed 
    } 
 
    /* Triggered when the user enters a color or clicks "Random". */ 
    public void actionPerformed(ActionEvent e) { 
        if (e.getActionCommand().equals("Random")) { 
            // Pick a random color name - first convert all keys to an 
ArrayList 
            ArrayList<String> colorNames = new       
   ArrayList<String>(colors.keySet()); 
            int randomIndex = RandomGenerator.getInstance().nextInt(0,  
                colorNames.size()); 



  – 2 – 

            String colorName = colorNames.get(randomIndex); 
  colorNameEntry.setText(colorName); 
            setBackground(colors.get(colorName)); 
        } else { 
            // Get the (case-insensitive) color entered and display it, if 
valid 
            String colorName = colorNameEntry.getText().toLowerCase(); 
            Color chosenColor = colors.get(colorName); 
            if (chosenColor != null) { 
                setBackground(chosenColor); 
            } 
        } 
    } 
 
    /* Read the color data from the file into a map of (name -> Color) */ 
    private void readColors() { 
        colors = new HashMap<String, Color>(); 
        try { 
            Scanner sc = new Scanner(new File(COLORS_FILE)); 
            while (sc.hasNext()) { 
                String colorName = sc.nextLine().toLowerCase(); // normalize 
case 
                String rgbValues = sc.nextLine(); 
                Scanner tokens = new Scanner(rgbValues); 
                int r = tokens.nextInt(); 
                int g = tokens.nextInt(); 
                int b = tokens.nextInt(); 
                Color c = new Color(r, g, b); 
                colors.put(colorName, c); 
            } 
        } catch (FileNotFoundException e) { 
            println("Couldn't load color file"); 
        } 
    } 
} 

 
2. Word Cloud 
 
/** 
 * File: WordCloud.java 
 * -------------------- 
 * This program allows the user to create a set of labels and then drag 
 * them around in the window. 
 */ 
 
import acm.graphics.*; 
import acm.program.*; 
import java.util.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class WordCloud extends GraphicsProgram { 
 /* Private constants */ 
 private static final int MAX_NAME = 25; 
 
 /* Private instance variables */ 



  – 3 – 

 private HashMap<String, GLabel> contents; 
 private JTextField nameField; 
 private GLabel currentLabel; 
 private GPoint last; 
 
 public void init() { 
  contents = new HashMap<String,GLabel>(); 
  addInteractors(); 
 } 
 
 /* Creates the control strip at the bottom of the window */ 
 private void addInteractors() { 
  add(new JLabel("Name"), SOUTH); 
  nameField = new JTextField(MAX_NAME); 
  add(nameField, SOUTH);   
   
  add(new JButton("Add"), SOUTH); 
  add(new JButton("Remove"), SOUTH); 
  add(new JButton("Clear"), SOUTH); 
 
  addActionListeners(); 
 } 
 
 /* Adds a label with the given name at the center of the window */ 
 private void addLabel(String name) { 
  GLabel label = new GLabel(name); 
  label.setFont(new Font("Helvetica", Font.BOLD, 18));  
  double labelX = getWidth() / 2.0 - label.getWidth() / 2.0; 
  double labelY = getHeight() / 2 + label.getAscent() / 2.0; 
  add(label, labelX, labelY); 
  contents.put(name, label); 
 } 
 
 /* Removes all labels in the contents table */ 
 private void removeContents() { 
  for (String labelName : contents.keySet()) { 
   remove(contents.get(labelName)); 
  } 
  contents.clear();  // Clear all entries in the hashmap 
 } 
 
 /* Called in response to button actions */ 
 public void actionPerformed(ActionEvent e) { 
  String labelName = nameField.getText();  
   
  // Detect both clicks and ENTER for adding a new label 
  if (e.getActionCommand().equals("Add")) {  
   addLabel(labelName); 
  } else if (e.getActionCommand().equals("Remove")) {  
   if (contents.containsKey(labelName)) {    
    remove(contents.get(labelName));  
   } 
  } else if (e.getActionCommand().equals("Clear")) {  
   removeContents(); 
  }  
 } 
 



  – 4 – 

 /* Called on mouse press to record the coordinates of the click */ 
 public void mousePressed(MouseEvent e) { 
  last = new GPoint(e.getPoint()); 
  currentLabel = (GLabel)getElementAt(last); 
 } 
 
 /* Called on mouse drag to reposition the object */ 
 public void mouseDragged(MouseEvent e) { 
  if (currentLabel != null) { 
   currentLabel.move(e.getX() - last.getX(), 
    e.getY() - last.getY()); 
   last = new GPoint(e.getPoint()); 
  } 
 } 
} 
 
3. Interactive Karel 
 
/* 
 * File: InteractiveKarel.java 
 * -------------------- 
 * This program lets the user control Karel as it moves and turns 
 * within the canvas window. 
 */ 
 
import acm.program.*; 
import acm.graphics.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
/* Simulates a simplified Karel the Robot through use of GUI interactors. */ 
public class InteractiveKarel extends GraphicsProgram {   
     
    /* The number of pixels wide/tall for the Karel images */ 
    private static final int KAREL_SIZE = 64; 
 
    /* The image of Karel currently displayed on the canvas. */ 
    private GImage karel; 
     
    /* The direction (NORTH, SOUTH, EAST, WEST) Karel is facing. */ 
    private String direction;  
 
    /* Sets up GUI components and Karel's initial image. */ 
    public void init() {     
        add(new JButton("move"), SOUTH);  
        add(new JButton("turnLeft"), SOUTH); 
        addActionListeners();  
    }  
 
    /* Add our graphics once the canvas is onscreen. */ 
    public void run() { 
        karel = new GImage("res/KarelEast.jpg"); 
        direction = EAST; 
        add(karel, 0, 0); 
    } 
 



  – 5 – 

    /* When we get an interaction, update Karel accordingly. */ 
    public void actionPerformed(ActionEvent event) {  
        String command = event.getActionCommand();  
        if (command.equals("move")) {  
            moveKarel(); 
        } else if (command.equals("turnLeft")) {  
            turnLeftKarel();  
        } 
    } 
 
    /* Moves Karel one step in the current direction. */ 
    private void moveKarel() {  
        double newX = karel.getX(); 
        double newY = karel.getY(); 
        if (direction.equals(NORTH)) { 
            newY -= KAREL_SIZE; 
        } else if (direction.equals(SOUTH)) { 
            newY += KAREL_SIZE; 
        } else if (direction.equals(EAST))  { 
            newX += KAREL_SIZE; 
        } else if (direction.equals(WEST))  { 
            newX -= KAREL_SIZE; 
        } 
 
        if (isKarelOnScreen(newX, newY)) {  
            karel.setLocation(newX, newY);  
        }  
    } 
 
    /* Causes Karel to turn 90 degrees to the left (counter-clockwise). */ 
    private void turnLeftKarel() {  
        if (direction.equals(NORTH)) { 
            direction = WEST; 
        } else if (direction.equals(EAST)) { 
            direction = NORTH; 
        } else if (direction.equals(SOUTH))  { 
            direction = EAST; 
        } else if (direction.equals(WEST))  { 
            direction = SOUTH; 
        }  
 
        karel.setImage("res/Karel" + direction + ".jpg"); 
    }  
 
    /* Returns whether Karel would be on-screen at the given x/y position. */ 
    private boolean isKarelOnScreen(double x, double y) {  
        return x >= 0 && y >= 0 && x + KAREL_SIZE <= getWidth()  
                && y + KAREL_SIZE <= getHeight();  
    } 
} 

 
 
 
 
 



  – 6 – 

4. Data Structure Design 
/* 
 * File: ExpandableArray.java 
 * -------------------------- 
 * This class provides methods for working with an array that expands 
 * to include any positive index value supplied by the caller. 
 */ 
 
public class ExpandableArray { 
 
     /** 
  * Creates a new expandable array with no elements. 
  */ 
 public ExpandableArray() { 
  array = new Object[0]; // Allows us to check length of array 
      // even when no elements exist 
 } 
 
     /** 
  * Sets the element at the given index position to the specified. 
  * value. If the internal array is not large enough to contain that 
  * element, the implementation expands the array to make room. 
  */ 
 public void set(int index, Object value) { 
  if (index >= array.length) { 
 
   // Create a new array that is large enough 
   Object[] newArray = new Object[index + 1]; 
 
   // Copy all the existing elements into new array 
   for (int i = 0; i < array.length; i++) { 
    newArray[i] = array[i]; 
   } 
 
   // Keep track of the new array in place of the old array 
   array = newArray; 
  } 
  array[index] = value; 
 } 
 
     /** 
  * Returns the element at the specified index position, or null if 
  * no such element exists.  Note that this method never throws an 
  * out-of-bounds exception; if the index is outside the bounds of 
  * the array, the return value is simply null. 
  */ 
 public Object get(int index) { 
  if (index >= array.length) return null; 
  return array[index]; 
 } 
 
 /* Private instance variable */ 
 private Object[] array; 
 
} 
 


