Sarai Gould & Laura Cruz-Albrecht Section #7
CS 106A August 9, 2019

Solutions to Section #7

Portions of this handout by Mehran Sahami, Eric Roberts, Marty Stepp, Nick Troccoli, and Julia Daniel
1. Colored Window

import acm.program.*;
import acm.util.*;
import java.io.*;

import java.util.*;
import java.awt.*;
import java.awt.event.¥*;
import javax.swing.¥*;

/* This program allows the user to type a color name and have that become the
* background color of the window. It uses a large data file of color names.
*/

public class ColoredWindow extends GraphicsProgram {

/* Private constants */
private static final int TEXT FIELD WIDTH = 16;
private static final String COLORS FILE = "res/colors.txt";

/* Private fields */
private JTextField colorNameEntry; // text field used for data entry
private HashMap<String, Color> colors; // color data from file

public void init() {
readColors () ;
addInteractors() ;

}

/* Adds the interactors and event listeners to the window. */
private void addInteractors() ({
add (new JLabel ("Enter color: "), SOUTH);
colorNameEntry = new JTextField(TEXT FIELD WIDTH) ;
colorNameEntry.setActionCommand ("Show") ;
add (colorNameEntry, SOUTH) ;

add (new JButton("Show"), SOUTH) ;
add (new JButton("Random"), SOUTH) ;
addActionlListeners() ;

colorNameEntry.addActionListener (this); // listen for ENTER pressed
}

/* Triggered when the user enters a color or clicks "Random". */
public void actionPerformed (ActionEvent e) {
if (e.getActionCommand () .equals("Random")) ({
// Pick a random color name - first convert all keys to an
Arraylist
ArrayList<String> colorNames = new
ArrayList<String>(colors.keySet()) ;
int randomIndex = RandomGenerator.getInstance() .nextInt (0,
colorNames.size()) ;

String colorName = colorNames.get (randomIndex) ;
colorNameEntry.setText (colorName) ;
setBackground (colors.get (colorName)) ;
} else {
// Get the (case-insensitive) color entered and display it, if
valid
String colorName = colorNameEntry.getText () .toLowerCase() ;
Color chosenColor = colors.get(colorName) ;
if (chosenColor !'= null) {
setBackground (chosenColor) ;

}
}

/* Read the color data from the file into a map of (name -> Color) */
private void readColors() {
colors = new HashMap<String, Color>();
try {
Scanner sc = new Scanner (new File (COLORS FILE)) ;
while (sc.hasNext()) {
String colorName = sc.nextLine() .tolLowerCase(); // normalize
case
String rgbValues = sc.nextLine() ;
Scanner tokens = new Scanner (rgbValues) ;
int r = tokens.nextInt();
int g tokens.nextInt() ;
int b = tokens.nextInt():;
Color c = new Color(r, g, b);
colors.put (colorName, c);

}
} catch (FileNotFoundException e) {
println("Couldn't load color file");

}

2. Word Cloud

/**
* File: WordCloud.java

* This program allows the user to create a set of labels and then drag
* them around in the window.

*/

import acm.graphics.*;
import acm.program.*;
import java.util.*;
import java.awt.event.¥*;
import javax.swing.¥*;

public class WordCloud extends GraphicsProgram {
/* Private constants */
private static final int MAX NAME = 25;

/* Private instance variables */

private HashMap<String, GLabel> contents;
private JTextField nameField;

private GLabel currentLabel;

private GPoint last;

public void init() {
contents = new HashMap<String,GLabel>() ;
addInteractors() ;

}

/* Creates the control strip at the bottom of the window */
private void addInteractors() ({

add (new JLabel ("Name") , SOUTH) ;

nameField = new JTextField(MAX NAME) ;

add (nameField, SOUTH) ;

add (new JButton("Add"), SOUTH) ;
add (new JButton ("Remove"), SOUTH) ;
add (new JButton("Clear"), SOUTH) ;

addActionListeners() ;

}

/* Adds a label with the given name at the center of the window */
private void addLabel (String name) {
GLabel label = new GLabel (name) ;
label.setFont (new Font ("Helvetica", Font.BOLD, 18));
double labelX = getWidth() / 2.0 - label.getWidth() / 2.0;
double labelY = getHeight() / 2 + label.getAscent() / 2.0;
add (label, labelX, labelY);
contents.put (name, label) ;

}

/* Removes all labels in the contents table */
private void removeContents () {
for (String labelName : contents.keySet()) {
remove (contents.get (labelName)) ;
}

contents.clear () ; // Clear all entries in the hashmap

}

/* Called in response to button actions */
public void actionPerformed (ActionEvent e) {
String labelName = nameField.getText() ;

// Detect both clicks and ENTER for adding a new label
if (e.getActionCommand () .equals("Add")) {
addLabel (labelName) ;
} else if (e.getActionCommand() .equals ("Remove")) {
if (contents.containsKey (labelName)) ({
remove (contents.get (labelName)) ;
}
} else if (e.getActionCommand() .equals("Clear")) {
removeContents () ;

}

_4-

/* Called on mouse press to record the coordinates of the click */
public void mousePressed (MouseEvent e) {

last = new GPoint(e.getPoint()) ;

currentlLabel = (GLabel)getElementAt (last);
}

/* Called on mouse drag to reposition the object */
public void mouseDragged (MouseEvent e) {
if (currentlLabel '= null) ({
currentlLabel .move (e.getX () - last.getX(),
e.getY() - last.get¥()):
last = new GPoint(e.getPoint()) ;

3. Interactive Karel

* File: InteractiveKarel. java

* This program lets the user control Karel as it moves and turns
* within the canvas window.

*/

import acm.program.*;
import acm.graphics.*;
import java.awt.event.¥*;
import javax.swing.¥*;

/* Simulates a simplified Karel the Robot through use of GUI interactors.

public class InteractiveKarel extends GraphicsProgram {

/* The number of pixels wide/tall for the Karel images */
private static final int KAREL SIZE = 64;

/* The image of Karel currently displayed on the canvas. */
private GImage karel;

/* The direction (NORTH, SOUTH, EAST, WEST) Karel is facing. */
private String direction;

/* Sets up GUI components and Karel's initial image. */
public void init() ({
add (new JButton("move"), SOUTH) ;
add (new JButton("turnLeft"), SOUTH) ;
addActionListeners() ;

}

/* Add our graphics once the canvas is onscreen. */
public void run() ({
karel = new GImage ("res/KarelEast.3jpg");
direction = EAST;
add (karel, 0, 0);

*/

/* When we get an interaction, update Karel accordingly. */
public void actionPerformed (ActionEvent event) ({
String command = event.getActionCommand() ;
if (command.equals("move")) {
moveKarel () ;
} else if (command.equals("turnLeft")) {
turnLeftKarel () ;
}
}

/* Moves Karel one step in the current direction. */
private void moveKarel () ({
double newX = karel.getX();
double newY = karel.getY();
if (direction.equals(NORTH)) {
newY -= KAREL SIZE;
} else if (direction.equals(SOUTH)) ({
newY += KAREL SIZE;
} else if (direction.equals(EAST)) ({
newX += KAREL SIZE;
} else if (direction.equals (WEST)) ({
newX -= KAREL SIZE;
}

if (isKarelOnScreen (newX, newY)) ({
karel.setLocation (newX, newY);
}
}

/* Causes Karel to turn 90 degrees to the left (counter-clockwise). */
private void turnLeftKarel () ({
if (direction.equals(NORTH)) {
direction = WEST;
} else if (direction.equals (EAST)) ({
direction = NORTH;
} else if (direction.equals(SOUTH)) ({
direction = EAST;
} else if (direction.equals (WEST)) ({
direction = SOUTH;
}

karel.setImage ("res/Karel" + direction + ".jpg"):;

}

/* Returns whether Karel would be on-screen at the given x/y position. */
private boolean isKarelOnScreen (double x, double y) ({
return x >= 0 && y >= 0 && x + KAREL SIZE <= getWidth()
&& y + KAREL SIZE <= getHeight();

4. Data Structure Design

/*

* File: ExpandableArray.java

* This class provides methods for working with an array that expands
* to include any positive index value supplied by the caller.

*/
public class ExpandableArray {

/**
* Creates a new expandable array with no elements.
*/
public ExpandableArray () {
array = new Object[0]; // Allows us to check length of array
// even when no elements exist

}

/**
* Sets the element at the given index position to the specified.
* value. If the internal array is not large enough to contain that
* element, the implementation expands the array to make room.
*/
public void set(int index, Object value) ({
if (index >= array.length) {

// Create a new array that is large enough
Object[] newArray = new Object[index + 1];

// Copy all the existing elements into new array
for (int 1 = 0; i < array.length; i++) {
newArray[i] = array[i];

}

// Keep track of the new array in place of the old array
array = newArray;

}

array[index] = value;

}

/**
* Returns the element at the specified index position, or null if
* no such element exists. Note that this method never throws an
* out-of-bounds exception; if the index is outside the bounds of
* the array, the return value is simply null.
*/
public Object get(int index) ({

if (index >= array.length) return null;

return array[index];

}

/* Private instance variable */
private Object[] array;

