Sarai Gould & Laura Cruz-Albrecht Section #7
CS 106A August 7,2019

Section Handout #7: Interactors and Data Structures

Portions of this handout by Mehran Sahami, Eric Roberts, Marty Stepp, Nick Troccoli, and Julia Daniel

1. ColoredWindow

Many years back, the website xkcd ran an experiment where it asked users to name a variety of
colors. Over 5 million colors and 140,000 participants later, they aggregated a collection of
various colors with their (sometimes eclectic) labeled names, from khaki to baby blue to sandy
brown to radioactive green (full list at https://xkcd.com/color/rgb/). Your job is to write a
GraphicsProgram that allows the user to type in one of these names to view its corresponding
color. The user can press “Show” or press ENTER to view the color. If the name the user entered
is not included in the data, your program should do nothing. There should also be a “Random”
button that picks a random color name and displays its name in the text field and the color
onscreen.

You should get the red/green/blue values for the named colors from the experiment from the
given text data file, res/colors. txt. This file contains the name of a color on one line and the
values of the red/green/blue components for that color on the next line. To create a Color out of
its red, green, and blue components, you can use the Color constructor by writing new
Color(r, g, b).To avoid reading the file every time the user wants to view a new color,

store the colors in a data structure.

00 ColoredWindow

Example colors.txt
pastel blue

72 100 175
baby blue

182 226 245
purple

130 64 234
blue

75 49 234

olive green

111 145 122
...and so on...

Enter color:  cornflower blue| Show Random




2. Word Cloud

“Word Clouds” are graphical arrangements of words into different clusters. They are often used to
organize ideas, show similarities, and create other interesting visualizations. For this problem,
write a program that lets a user design their own word cloud:

® WordCloud

West Campus East Campus

Lag Late Nite

Engineering Quad Wilbur Field

Crothers

Farrillaga (gym) Wilbur

Meyer Green

GovCo
Ricker Roble Toyon Stern
. Lake Lag Weird Stern art sculpture
Suites Arrillaga (dining)
Name Arrillaga (dining) Add Remove Clear

The program should have the following interactors: a “Name” label, a text field, and buttons to
add, remove, and clear labels. To add a label to the screen, the user should be able to type text into
the text field and click “Add” to add it. Labels should initially be added at the center of the screen.
To remove a label from the screen, the user should be able to type in the text of the onscreen label
they want to remove and click “Remove”. You may assume that each label’s text is unique. To
clear all labels from the screen, the user should be able to click “Clear”.

Once a label has been added to the screen, the user should be able to click and drag the label around
with the mouse to reposition it.

Note: if the only objects in the window were labels, you could implement the clear button by
removing everything from the canvas. While that would work in this case, you might want to
extend the program so if there were other objects on the screen that were part of the application,
they would remain onscreen. In that case, how could we implement clear?

3. Interactive Karel
Write a complete program named InteractiveKarel with a graphical user interface that imitates
some aspects of how Karel the Robot behaves.



e NO InteractiveKarel

move ~ turnLeft

As shown in the diagram above, you should create a move button and a turnLeft button. Pressing
move causes Karel to move one length in the direction it is facing, and pressing turnLeft causes
Karel to turn left. If moving Karel would cause it to move off the screen, just keep Karel where it
is. You can assume you are given four images for each of the directions that Karel can face called
KarelEast.jpg,KarelWest. jpg, KarelSouth. jpg, and KarelNorth. jpg. You can assume each
of these images are 64 pixels in width and height. Karel should start facing east in the upper-left
corner. Note: It may simplify your code to know that GraphicsPrograms come with pre-existing
String constants named NORTH, SOUTH, EAST, and WEST whose values are "North", "South", etc.

4. Data Structure Design

So far in CS106A, we've worked a good deal with arrays and ArrayLists. While arrays have
fixed sized, ArrayLists grow as more elements are added (usually, to the end). We could think of
potentially an even more powerful idea: an expandable array. The idea here is that we could
think of an array that dynamically expanded to accomodate whatever index we try to access. For
example, if we started with an empty array, and tried to add an element at index 14, the array
would automatically grow large enough, so that elements O through 14 all existed (and we could
store the given value at index 14). All the elements of the array that had not previously been
given a value would have the value null. Then if we tried store a value at, say, index 21, the array
would again grow automatically to have space for elements up to and including index 21. Note
that the value at index 14 would still appear to be at index 14 in the expanded array.

Being able to expand an array dynamically is useful enough that it might be worth creating an
abstraction to implement it. Such an abstraction is shown in Figure 1 (on the next page), which
shows the structure of an ExpandableArray class that allows the client to call set on an index
even if it doesn’t currently exist in the array. When such a situation occurs, the implementation
of the ExpandableArray class has to allocate a new internal array that is large enough to hold
the desired element and then copy all of the existing elements into the new array. The point of
this problem is simply to make that operation general by creating a new class that provides the
functionality, and we make the class sufficiently general by having it be able to store any type of
object (hence the use of the type Object for the array elements). To create an expandable array,
and set some of its values (which in this case are Strings), you might have code such as:



ExpandableArray myList = new ExpandableArray();
myList.set (14, “Lebron”);
myList.set (21, “Serena”);

When you wanted to retrieve the value at a particular element of the expandable array, you could
do something like the following:

String value = (String) myList.get(14); // note casting to String
if (value != null) {
println(“Got value: “ + value);

}

In writing your solution, you should keep the following points in mind:

e The underlying structure in your implementation must be an array containing elements of
the type Object. Although using a HashMap might well be easier, it will be less efficient
than the array in terms of the time necessary to look up a specific index.

e Notice that the definition of the abstraction explicitly states that the get method should
return null if the specified index value does not exist. That means that you will need to
check whether the index is out of bounds before trying to select that element.

¢ You may assume that all of the index values supplied by the client are nonnegative and
do not need to check for such values in the implementations of get and set.

Figure 1. Proposed structure of the ExpandableArray class
[ **
* This class provides methods for working with an array that expands

* to include any positive index value supplied by the caller.
*/

public class ExpandableArray {

[ **
* Creates a new expandable array with no elements.
*/
public ExpandableArray() {
... You fill in the implementation . . .

}

[ **
* Sets the element at the given index position to the specified.
* value. If the internal array is not large enough to contain that
* element, the implementation expands the array to make room.
*/
public void set(int index, Object wvalue) {
... You fill in the implementation . . .

}

[ **

* Returns the element at the specified index position, or null if
* no such element exists. Note that this method never throws an
* out-of-bounds exception; if the index is outside the bounds of
* the array, the return value is simply null.

*/

public Object get(int index) {
... You fill in the implementation . . .

}




