
Chris Gregg and Wil Kautz

CS 106A

Handout #4

June 22, 2020

Using Karel with PyCharm

Once you have downloaded a copy of PyCharm as described in the “Installing PyCharm” handout

on the course website, your next task is to understand how to write and run Karel programs using

PyCharm. At the end of the quarter, we will teach you how to create new PyCharm projects from

scratch, but for now, providing starter code reduces the complexity of your assignments and helps

you get started more easily. That way, you can ignore the mechanical details of making new

projects and can focus instead on the problem-solving aspects of the assignments.

Downloading starter projects

The first step of working with any Karel assignment is to download the starter project for that

assignment. If you go to the CS106A website and click on the Assignments dropdown at the top,

you’ll see the Karel assignment listed. Click on “1 - Karel,” and on the resulting page, there will

be a link to download the starter code. Once you click on this link, you’ll be directed to do a short

quiz on the Honor Code. After completing the quiz, you will be presented with a link that you

should click on to download the starter code, which comes in a file called Assignment1.zip. In

some cases, the browser will also automatically unzip/extract the folder when you download it if

you have the appropriate software for expanding files from a ZIP archive (extraction software is

usually built in to Windows 7, 8, and 10 or macOS). The unzipped contents of the ZIP file will be

a directory named Assignment1 that contains the project. Note: If you are on a Windows

computer, you may have a second Assignment1 folder nested inside the outer Assignment 1

folder. Make sure to use the innermost Assignment 1 folder. Move that folder to some place

on your computer where you can keep track of it when you want to load the project.

Importing projects into the workspace

From here, your next step is to open PyCharm, which will bring up the window shown on the left-

hand side of Figure 1 (below). To select the project you want to work on, you can click on “Open”

in this window. Or if you already have PyCharm open with a different project, from the “File”

menu at the top of the screen, select “Open”.

Navigate to the Assignment1 folder and open it. Open the folder, rather than a particular file you

want to edit. If you already have another project open, PyCharm will prompt you to either open

the project in your existing window or in a new window. You can select either. Once you have

opened the project, you should see a view as shown in the right-hand side of Figure 1 (below).

 - 2 -

Figure 1: The first window that opens when you start PyCharm (left) should have an Open option

for you to select a project. After opening a project, you should see the default PyCharm landing

view (right).

First, we will focus on the contents of the left toolbar, which is illustrated in Figure 2. We can see

the current project we are working on (Assignment1), as well as all of its contents, which include

folders and Python files. The small triangle (which appears as a plus-sign in some versions of

Windows) to the left of the folder name indicates that you can open it to reveal its contents. For

the purposes of Assignment1, you will not need to inspect or change any files in the karel or

worlds folders.

Figure 2: Left sidebar displaying Assignment1 files

For Assignment 1, we will only focus on the files contained in the top-level of the project folder.

You can open any of these files by double-clicking on its name. If you double-click on

CollectNewspaperKarel.py, for example, the file will open in the editing area in the middle

section of the PyCharm screen, as displayed in Figure 3.

 - 3 -

Figure 3: Text editor view of CollectNewspaperKarel.py

Note that sometimes the comments at the top of the file may not display initially and may need to

be "expanded" by clicking the small '+' sign (to the left of the comment header lines and to the

right of the line numbers).

The file we include in the starter code contains not the finished product but only the header line

for the project. The actual program must still be written. If you look at the assignment handout,

you’ll see that the problem is to get Karel to collect the “newspaper” from outside the door of its

“house” as shown in Figure 4.

Figure 4: Karel’s starting state for CollectNewspaperKarel.py

 - 4 -

Suppose that you just start typing away and fill in the main method with the steps below:

def main():

 move()

 turn_karel_right()

 move()

 turn_left()

 move()

 pick_beeper()

This program isn’t going to do exactly what you want (hence the bug picture off to the side)! But

it is still interesting to see what happens. PyCharm reads through your program file as you type

commands and then tells you about any errors it finds. Errors will be underlined in red, and you

can get more information about a given error by hovering over it (shown in Figure 5).

Figure 5: Code editor view of PyCharm error highlighting

In this case, an error of the type “Unresolved reference” tells us that we tried to give Karel the

command turn_karel_right() but never defined what that command means! To fix this error,

we should add a function definition in the file that defines what it means to

 - 5 -

turn_karel_right(). Once we fix this error, we see that PyCharm no longer underlines any of

the lines in our program in red!

Running a Karel program in PyCharm

To run a program in PyCharm, click the “Terminal” option at the bottom of the screen, which

should open up a portion of PyCharm as seen in Figure 6.

Figure 6: The PyCharm terminal that is used to run Python programs

Mac Users: To run any Karel program, all you have to do is type the following command into the

Terminal and hit “Enter”:
python3 InsertNameHereKarel.py

PC Users: To run any Karel program, all you have to do is type the following command into the

Terminal and hit “Enter”:
py InsertNameHereKarel.py

As a side note, in many handouts we might use the Mac convention of running programs by using

the command python3 <program name>. If you are a PC user, you should instead use the

command py <program name>. Just by convention on the PC, you run the Python interpreter

using the command py (as opposed to python3 on the Mac).

For example, if we were working on a Mac and wanted to run CollectNewspaperKarel.py,

we would type in the command shown in Figure 7 and then hit “Enter”.

Figure 7: The PyCharm terminal with the correct command to run CollectNewspaperKarel

PyCharm will take a couple of seconds to load your program and then will display a window as

seen in Figure 8.

 - 6 -

Figure 8: The Karel display that appears when running CollectNewspaperKarel.py,

including Karel’s world, a Run Program button, and a Load World button

If you then press the Run Program button, Karel will go through the steps in the main() function

that you wrote.

To change the speed at which Karel runs through its commands, you can use the slider underneath

the two buttons. Moving the slider to the right increases the speed at which Karel runs, while

moving the slider to the left causes Karel to move slower. Setting the slider to the far-right will

cause Karel to almost instantly finish its task, with all intermediate action happening too quickly

for the human eye to distinguish.

In this case, however, all is not well. Karel begins to move across and down the window as if

trying to exit from the house, but ends up one step short of the beeper. When Karel then executes

the pick_beeper() command at the end of the main() method, there is no beeper to collect.

As a result, Karel stops, a popup window appears, red text is displayed at the bottom of the window,

and an error is displayed in PyCharm’s bottom panel, as shown in Figures 9 and 10.

Figure 9: All is not well when you get a notification that Karel has crashed

 - 7 -

Figure 10: The bottom panel of PyCharm displays an error message that occurs when something

has gone wrong in Karel’s world

This is an example of a logic bug, in which you have correctly followed the syntactic rules of the

language but nonetheless have written a program that does not correctly solve the problem. The

error message doesn’t tell you how to fix the issue, but if you look at what it says carefully, you’ll

see that it does tell you why Karel stopped (Karel tried to pick up a beeper on corner (5,3) when

“no beepers on corner”) and what line of your program Karel was executing when the error

occurred (“line 24 in main” in CollectNewspaperKarel.py).

Running into bugs like these is a very common thing for all programmers, and though the text

looks scary, you are equipped with all the tools you need to think through the issue and to update

your code accordingly. More information on how to work through these kinds of logic errors can

be found in the Debugging section of this handout. To make Karel run again, after you’ve made

changes to your code, you can close the original window and run the same command as before to

re-run the program.

Running Karel in different worlds

In order to successfully complete Assignment 1, the last piece of the puzzle that we haven’t worked

through yet is how to run your Karel program in different worlds. Say we are working on

TripleKarel and we think that we have gotten our code to work in the default world, which

looks like what is shown in Figure 11.

Figure 11: TripleKarel’s default world

 - 8 -

We want to make sure that Karel works in different worlds so that the code we wrote is bug-free

and generalizes to new worlds. To do so, click on the Load World button, which brings up a file

browser view that lists all of the provided worlds that come packaged with Assignment 1, as shown

in Figure 12.

Figure 12: File browser window showing all the world files in the Assignment 1 worlds folder.

Select and open the world in which you want to run Karel. The new world will now appear on the

right hand side of the Karel window. You can then test Karel in this new world by clicking on the

Run Program button.

Note: If you see the following error appear when loading a new world, you can safely ignore it.
objc[98046]: Class FIFinderSyncExtensionHost is implemented in both

/System/Library/PrivateFrameworks/FinderKit.framework/Versions/A/FinderKit (0x7fff883583c8) and

/System/Library/PrivateFrameworks/FileProvider.framework/OverrideBundles/FinderSyncCollaborationFileProvide

rOverride.bundle/Contents/MacOS/FinderSyncCollaborationFileProviderOverride (0x115d89f50). One of the two

will be used. Which one is undefined.

Debugging

“As soon as we started programming, we found to our surprise that it

wasn’t as easy to get programs right as we had thought. Debugging had to

be discovered. I can remember the exact instant when I realized that a large

part of my life from then on was going to be spent in finding mistakes in my

own programs.”

— Maurice Wilkes, 1979

More often than not, the programs that you write will not work exactly as you planned and will

instead act in some mysterious way. In all likelihood, the program is doing precisely what you

told it to. The problem is that what you told it to do wasn’t correct. Programs that fail to give

correct results because of some logical failure on the part of the programmer are said to have bugs;

the process of getting rid of those bugs is called debugging.

 - 9 -

Debugging is a skill that comes only with practice. Even so, it is never too early to learn the most

important rule about debugging:

In trying to find a program bug, it is far more important to understand

what your program is doing than to understand what it isn’t doing.

Most people who come upon a problem in their code go back to the original problem and try to

figure out why their program isn’t doing what they wanted. Such an approach can be helpful in

some cases, but it is more likely that this kind of thinking will make you blind to the real problem.

If you make an unwarranted assumption the first time around, you may make it again and be left

in the position that you can’t for the life of you see why your program isn’t doing the right thing.

When you reach this point, it often helps to try a different approach. Your program is doing

something. Forget entirely for the moment what it was supposed to be doing, and figure out exactly

what is happening. Figuring out what a wayward program is doing tends to be an easier task,

mostly because you have the computer right there in front of you. PyCharm has many tools that

help you monitor the execution of your program and figure out what is going on. You’ll have a

chance to learn more about these tools in the coming weeks.

