
Chris Gregg and Wil Kautz
CS 106A 

Handout #5 

June 22, 2020 

Assignment #1: Karel the Robot 
Due: 10:30am (Pacific Daylight Time) on Tuesday, June 30th 

Based on  problems by Nick Parlante and.Eric Roberts, lovingly modified by your current CS106A staff. 

This assignment consists of four Karel programs (and one extra credit optional program). There is 

a starter project including all of these problems on the CS106A website under the “Assignments” 

tab.  Before you start on this assignment, make sure to read Handout #4 (Using Karel with 

PyCharm) in its entirety. When you are ready to start working on these programs, you need to: 

1. Download the starter project as described in Handout #4 (Using Karel with PyCharm).

2. Edit the Karel program files so that the assignment actually does what it’s supposed to do.

This will involve a cycle of coding, testing, and debugging until everything works.

3. Once you have gotten each part of the program to run correctly in the default world

associated with the problem, you should make sure that your code runs properly in all of

the worlds that we have provided for a given problem. Instructions on how to load new

worlds for Karel to run in can be found in Handout #4 (Using Karel with PyCharm).

4. Submit your assignment on Paperless as described in Handout #6 (Submitting

Assignments), which will be distributed by Friday.  Remember that you can submit more

than one version of your project, but only the most recent submission will be graded. If you

discover an error after you’ve made a submission, just fix your program and submit a new

copy.

The four Karel problems to solve are described on the following pages. There is also a bonus 

problem described at the end that is optional to complete, as well as other suggestions for 

extensions you can complete for this assignment. 

Please remember that your Karel programs must limit themselves to the language features 

described in the Karel the Robot Learns Python reader. You may not use other features of 

Python (including variables, parameters, break, and return), even though the PyCharm-

based version of Karel accepts them. 

https://compedu.stanford.edu/karel-reader/docs/python/en/intro.html


- 2 -

Problem 1  (CollectNewspaperKarel.py) 

Your first task is to solve a simple story-problem in Karel’s world. Suppose that Karel has settled 

into its house, which is the square area in the center of Figure 1.  During this time, you might 

correctly surmise that Karel is sheltering-in-place. 

Figure 1: Karel’s starting state for CollectNewspaperKarel 

Karel starts off in the northwest corner of its house as shown in the diagram. The problem you 

need to solve is to get Karel to collect the newspaper. The newspaper, like all objects in Karel’s 

world, is represented by a beeper. You must get Karel to pick up the newspaper located outside 

the doorway and then to return to its initial position. 

This exercise is simple and is meant to help you get you started programming with Karel. You can 

assume that every part of the world looks just as it does in the diagram: the house is exactly this 

size, the door is always in the position shown, and the beeper is just outside the door. Thus, all you 

have to do is write the sequence of commands necessary to have Karel: 

1. Move to the newspaper,

2. Pick it up, and

3. Return to its starting point.

Although the program does not have many lines of code, it is still worth getting some practice with 

decomposition. In your solution, include a function for each of the three steps shown in the outline 

above. 

Your program should run successfully in the following world: 

 CollectNewspaperKarel.w (default world) 

Note that all Karel worlds are located in the worlds folder in the Assignment 1 project folder. 

1 2 3 4 5 6 7

1

2

3

4

5



- 3 - 

 

 

Problem 2  (TripleKarel.py) 

Your second task is to help Karel paint the exterior of some oddly-shaped buildings using beepers! 

For this problem, Karel starts facing west next to a “building” (represented by a rectangle, 

constructed from walls) whose sides span one or more street corners. Karel’s goal is to paint all of 

the buildings present in the world by placing beepers along three of the sides of each of the 

buildings. 

 

We recommend breaking down the problem into the following steps: 

1. First, Karel should paint one side of the rectangle, placing beepers on all corners that are 

adjacent to the wall of the building. Note that there’s a boundary detail here: the last 

square where Karel ends should not have a beeper on it.  

2. Next, Karel should accomplish the task of painting a single rectangle. Think about how 

you can use the functionality of the previous subtask to help you accomplish this goal. You 

may need to write a small amount of code to reposition Karel in between painting 

individual walls of a building. 

3. Finally, the overall TripleKarel problem is just painting all three buildings in the world. 

Again, you may need to write a small amount of code to reposition Karel in between 

painting individual buildings. 

 

Figures demonstrating the before and after stages of each of the three steps are shown on the 

following page. 

         

Figure 2: After you’ve completed the first step, Karel should be able to paint one side of one 

building. Running the program would result in the above start (left) and end (right) states. 

 

 

     
Figure 3: After you’ve completed the second step, Karel should be able to paint one building. 

Running the program would result in the above start (left) and end (right) states. 

 



- 4 - 

 

 

 

Figure 4: After you have painted the whole world, the end result should look like this. 

 

You can assume that: 

● Karel will always start facing west at the upper right corner of the leftmost building (at the 

position where the first beeper should be placed). 

● Karel will have infinite beepers in his beeper bag, so he can paint any size of buildings. 

● Although buildings may be of varying sizes, there will always be exactly three of them, 

and their relative position to one another will always be the same (as displayed in Figure 

6).  If you are still confused about what assumptions you can make about the world, see 

the additional Triple world files we have included. 

 

You should make sure your program runs successfully in all of the following worlds (which are 

just a few different examples to test out the generality of your solution): 

TripleKarel.w (default world), Triple1.w, Triple2.w, Triple3.w 

 

Note that all Karel worlds are located in the worlds folder in the Assignment 1 project folder. 

 

 

Problem 3  (StoneMasonKarel.py) 

Your third task is to repair the damage done to the Main Quad in the 1989 Loma Prieta earthquake. 

In particular, Karel should repair a set of arches where some of the stones (represented by beepers, 

of course) are missing from the columns supporting the arches, as illustrated in Figure 5 (below). 

https://en.wikipedia.org/wiki/1989_Loma_Prieta_earthquake


- 5 - 

 

 

 
Figure 5: An initial example world with broken arches that StoneMasonKarel must repair 

 

Your program should work on the world shown above, but it should be general enough to handle 

any world that meets the basic conditions outlined at the end of this problem. There are several 

example worlds in the starter folder, and your program should work correctly in all of them.  

 

When Karel is done, the missing stones in the columns should be replaced by beepers, so that the 

final picture resulting from the initial world shown in Figure 5 would look like the illustration in 

Figure 6.  

 

 
Figure 6: Karel should repair the Main Quad to a structurally sound state after completion. 

 

Karel’s final location and the final direction Karel is facing at the end of the run do not matter.  

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8



- 6 - 

 

 

 

Karel may count on the following facts about the world: 

● Karel starts at the corner where 1st Avenue and 1st Street meet, facing east, with an infinite 

number of beepers in Karel’s beeper bag. The first column should be built on 1st Avenue. 

● The columns are always exactly four Avenues apart, so they would be built on 1st Avenue, 

5th Avenue, 9th Avenue, and so on. 

● The final column will always have a wall immediately after it. Although this wall appears 

after 13th Avenue in the example figure, your program should work for any number of 

beeper columns. 

● The top of a beeper column will always be marked by a wall. However, Karel cannot 

assume that columns are always five units high, or even that all columns within a given 

world are the same height. 

● In an initial world, some columns may already contain beepers representing stones that are 

still in place. Your program should not put a second beeper on corners that already have 

beepers. Avenues that will not have columns will never contain existing beepers. 

 

You should make sure your program runs successfully in all of the following worlds (which are 

just a few different examples to test out the generality of your solution): 

StoneMasonKarel.w (default world), SampleQuad1.w, SampleQuad2.w  

 

Note that all Karel worlds are located in the worlds folder in the Assignment 1 project folder. 

 

 

Problem 4  (CheckerboardKarel.py) 

Your fourth and final task is to get Karel to create a checkerboard pattern of beepers inside an 

empty rectangular world, as illustrated in Figure 7. (Karel’s final location and the final direction it 

is facing at the end of the run do not matter.) 

 
Figure 7: The beginning and end states for CheckerboardKarel. 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Bef ore

1 2 3 4 5 6 7 8

After



- 7 -

This problem has a nice decomposition structure along with some interesting algorithmic issues. 

As you think about how you will solve the problem, you should make sure that your solution works 

with checkerboards that are different in size from the standard 8x8 checkerboard shown in the 

example above. Some examples of such cases are discussed below.  

Odd-sized checkerboards are tricky, and you should make sure that your program generates the 

following pattern in a 5x3 world: 

Figure 8: Karel should generate this checkerboard pattern for a 5x3 world. 

Other special cases you should consider are worlds with only a single column or a single row. The 

starter code folder contains several sample worlds with these special cases, and you should make 

sure that your program works for each of them. 

This problem is hard: Try simplifying your solution with decomposition. Can you checker a single 

row/column? Make the row/column work for different widths/heights? Once you’ve finished a 

single row/column, can you make Karel fill two? Three? All of them? Incrementally developing 

your program in stages helps break it down into simpler parts and is a wise strategy for attacking 

hard programming problems. 

You should make sure your program runs successfully in all of the following worlds (which are 

just a few different examples to test out the generality of your solution): 

CheckerboardKarel.w (default world), 8x1.w, 1x8.w, 7x7.w, 6x5.w, 3x5.w, 40x40.w, 1x1.w 

Note that all Karel worlds are located in the worlds folder in the Assignment 1 project folder. 

Submission 

Following the instructions in Handout #6 (Submitting Assignments), you should submit the 

following files (do not include any files not included in this list!): 

● CollectNewspaperKarel.py

● TripleKarel.py

● StoneMasonKarel.py

● CheckerboardKarel.py

If you did the bonus portion(s) of the assignment, you should also submit: 

● MidpointKarel.py

● ExtensionKarel.py

1

2

3

1 2 3 4 5



- 8 - 

 

 

 

Possible extensions 

Bonus: Problem 5  (MidpointKarel.py) 

This problem is a bonus problem that is not required. Students who successfully complete this 

problem will be awarded a small amount of extra credit on the assignment. 

 

As an exercise in solving algorithmic problems, program Karel to place a single beeper at the 

center of 1st Street. For example, say Karel starts in the 5x5 world pictured in Figure 9. 

 

 
Figure 9: The beginning state for MidpointKarel 

 

Karel should end with Karel standing on a beeper in the following position (Figure 10): 

 

 
Figure 10: The end state for MidpointKarel 

 

Note that the final configuration of the world should have only a single beeper at the midpoint of 

1st Street. Along the way, Karel is allowed to place additional beepers wherever it wants to, but 

must pick them all up again before it finishes.  Similarly, if Karel paints/colors any of the corners 

in the world, they must all be uncolored before Karel finishes. 

 



- 9 - 

 

 

In solving this problem, you may count on the following facts about the world: 

● Karel starts at 1st Avenue and 1st Street, facing east, with an infinite number of beepers in 

its bag. 

● The initial state of the world includes no interior walls or beepers. 

● The world need not be square, but you may assume that it is at least as tall as it is wide. 

 

Your program, moreover, can assume the following simplifications: 

● If the width of the world is odd, Karel must put the beeper in the center square. If the width 

is even, Karel may drop the beeper on either of the two center squares. 

● It does not matter which direction Karel is facing at the end of the run. 

 

There are many different algorithms you can use to solve this problem so feel free to be creative! 

 

You should make sure your program runs successfully in all of the following worlds (which are 

just a few different examples to test out the generality of your solution): 

MidpointKarel.w (default world), Midpoint1.w, Midpoint2.w, Midpoint8.w 

 

Note that all Karel worlds are located in the worlds folder in the Assignment 1 project folder. 

 
 

Bonus: Create your own Karel project 

If you finish early, you may optionally write a Karel project of your own choice. Modify 

ExtensionKarel.py to use Karel to complete any task of your choosing. Extensions are a great 

chance for practice and, if your extension is substantial enough, it might help you earn a + score. 

Make sure to write comments to explain what your program is doing and update 

ExtensionKarel.w to be an appropriate world for your program.  

 

 

Advice, Tips, and Tricks 

All of the Karel problems you will solve, except for CollectNewspaperKarel, should be able to 

work in a variety of different worlds that match the problem specifications.  When you first run 

your Karel programs, you will be presented with a sample world in which you can get started 

writing and testing your solution.  However, we will test your solutions to each of the Karel 

programs, except for CollectNewspaperKarel, in a variety of test worlds.  Unfortunately, each 

quarter, many students submit Karel programs that work brilliantly in the default worlds but which 

fail catastrophically in some of the other test worlds.  Before you submit your Karel programs, be 

sure to test them out in as many different worlds as you can.  We've provided several test worlds 

in which you can experiment, but you can also develop your own worlds for testing. 

 

When writing your Karel programs, to the maximum extent possible, try to use the top-down 

design techniques we developed in class.  Break the task down into smaller pieces until each 

subtask is something that you know how to do using the basic Karel commands and control 

statements.  These Karel problems are somewhat tricky, but appropriate use of top-down design 

can greatly simplify them. 



- 10 -

As mentioned in class, it is just as important to write clean and readable code as it is to write correct 

and functional code.  A portion of your grade on this assignment (and the assignments that follow) 

will be based on how well-styled your code is.  Before you submit your assignment, take a minute 

to review your code to check for stylistic issues like those mentioned below. 

Have you added comments to your methods? To make your program easier to read, you can add 

comments before and inside your methods to make your intention clearer. Good comments give 

the reader a clue about what a method does and, in some cases, how it works. We recommend 

writing pre- and post-conditions for each function, as shown in the table below. 

Not-So-Good Style Good Style 

def fill_row_with_beepers(): 

  while front_is_clear(): 

put_beeper() 

move() 

  put_beeper() 

def fill_row_with_beepers(): 

  """ 

  Makes Karel move to the end of 

  the row, dropping a beeper 

  before each step it takes. 

  Pre-condition: None 

  Post-condition: Karel is facing 

  the same direction as before, 

  and every step between Karel's 

  old position and new position 

  has had a beeper added to it. 

  """ 

  while front_is_clear(): 

   put_beeper() 

   move() 

 put_beeper() 

Did you decompose the problem? There are many ways to break these Karel problems down into 

smaller, more manageable pieces. Decomposing the problem elegantly into smaller sub-problems 

will result in a small number of easy-to-read functions, each of which performs just one small task. 

Decomposing the problem in other ways may result in functions that are trickier to understand and 

test. Look over your code and check to see whether you've decomposed the problem into smaller 

pieces. Does your code consist of a few enormous functions (not so good), or many smaller 

functions (good)? 

This is not an exhaustive list of stylistic conventions, but it should help you get started. As always, 

if you have any questions on what constitutes good style, feel free to see the course helpers at the 

LaIR with questions, come visit the teaching team during office hours, or email your section leader 

with questions! 




