
Chris Gregg and Wil Kautz Handout #7
CS 106A June 30, 2020

Assignment #2: Khan-sole Academy and Computing Interest
Due: 10:30am (Pacific Daylight Time) on Tuesday, July 7th

Based on problems by Jerry Cain, Eric Roberts, Nick Bowman, Sonja Johnson-Yu, Kylie Jue, and the current CS106A staff.

This assignment consists of multiple short problems to give you practice with several
different concepts in Python (e.g., variables, control structures, etc.) as well as two longer
programs. You can download the starter code for this project under the “Assignments” tab
on the CS106A website. The starter project will provide Python files for you to write your
programs in.

The assignment is broken up into two parts. The first part of the assignment will give you
practice writing short programs (we call them “sandcastles”). In the second part of the
assignment you’ll get the chance to create two larger programs. In the spirit of learning
how to code, in this assignment we’re going to use code to help others learn! The second
part of this assignment includes a mini version of Khan(-sole) Academy as well as a
program to show users how to compute interest in a bank account.

Part 1: Sandcastles
“Sandcastle” problems are meant to be fairly straightforward and make sure you’re solid
on particular concepts (like control flow, variables, and functions) before moving on to
writing larger programs. They’re kind of like building sandcastles in a sandbox – they’re
meant to be fun to do and no one gets hurt. Please make sure you do these six problems
before moving on to other parts of the assignment.

1. For this problem, you will be tracing some code (below) by hand. Please try doing

this by hand rather than plugging it into PyCharm (or another Python
interpreter). What is printed to the console when the following function call is made?
Put your answer in the file trace.txt provided in the Assignment 2 folder.

"""
This program is just meant to test your understanding
of variables, control flow, and functions.
"""

def mystery():
 x = 3
 x = 5 - x / 2
 print(x)

def main():
 x = 1
 while x < 20:
 print(f"x = {x}")
 mystery()
 x *= 2
 print(f"x = {x}")

if __name__ == "__main__":
 main()

 – 2 –

2. Write a program in the file subtract_numbers.py that reads two real numbers from

the user and prints the first number minus the second number. You can assume the
user will always enter valid real numbers as input (negative values are fine). Yes, we
know this problem is really similar to a problem we did in class – that’s why this
problem is a sandcastle! A sample run of the program is shown below (user input is in
italics):

This program subtracts one number from another.
Enter first number: 5.5
Enter second number: 2.1
The result is 3.4.

3. Write a program in the file liftoff.py that prints out the calls for a spaceship that is

about to launch. Countdown the numbers from 10 to 1 and then write “Liftoff!” Your
program should include a for loop using range. A sample run of the program is below.

10
9
8
7
6
5
4
3
2
1
Liftoff!

4. Write a program in the file random_numbers.py that prints 10 random integers (each

random integer should have a value between 0 and 100, inclusive). Your program
should use a constant named NUM_RANDOM, which determines the number of random
numbers to print (with a value of 10). It should also use constants named MIN_RANDOM
and MAX_RANDOM to determine the minimal and maximal values of the random numbers
generated (with respective values 0 and 100). To generate random numbers, you should
use the function random.randint() from Python’s random library (which we
discussed in class). A sample run of the program is shown below.

35
10
45
59
45
100
8
31
48
6

 – 3 –

5. Humans first landed on the moon on July 20, 1969. People have often wondered how
much they would weigh if they were on the moon. It turns out that on the moon, you
would weigh 16.5% of your weight on Earth. Write a program moon_weight.py that
asks the user for their weight (you can assume is a real-valued input is given by the
user) and prints out their weight on the moon. If the user enters a negative value (yes,
they’re being mean and trying to break your program), you should just print out that
weights can’t be negative. Remember when writing your solution, that it’s good
programming style to use constants where appropriate. Two sample runs of the
program are shown below (user input is in italics).

Sample run 1 (note the imprecision of floating-point numbers in the answer)
Enter your weight: 165.3
Your weight on the moon is 27.274500000000003

Sample run 2
Enter your weight: -13
Sorry, you can't have a negative weight.

6. In geometry, you learned the Pythagorean theorem for the relationship among the
lengths of the three sides of a right triangle:

𝑎! + 𝑏! = 𝑐!

which can alternatively be written as:

c  = (𝑎! + 𝑏!

Write a program in the file pythagorean.py that gets two values for a and b as floats
(you can assume that a and b will be positive real values) from the user and then
calculates the solution of c and prints it. Recall that to compute square roots, you can
use the function math.sqrt() from Python’s math library (which we discussed in
class). A sample run of the program is shown below (user input is in italics):

Enter values to compute the Pythagorean theorem.
a: 9.7
b: 3.2
c = 10.21420579389313

 – 4 –

Part 2: Longer programs
1. Khan-sole Academy
Now that you’ve seen how programming can help us in a number of different areas, it’s
time for you to implement Khan-sole Academy—a program that helps other people learn!
In this problem, you’ll write a program in the file khansole_academy.py that randomly
generates simple addition problems for the user, reads in the answer from the user, and then
checks to see if they got it right or wrong, until the user appears to have mastered the
material.

More specifically, your program should be able to generate simple addition problems that
involve adding two 2-digit integers (i.e., the numbers 10 through 99). The user should be
asked for an answer to each problem. Your program should determine if the answer was
correct or not, and give the user an appropriate message to let them know. Your program
should keep giving the user problems until the user has gotten 3 problems correct in a row.
(Note: the number of problems the user needs to get correctly in a row to complete the
program is just one example of a good place to specify a constant in your program).

A sample run of the program is shown below (user input is in italics).

What is 51 + 79?
Your answer: 120
Incorrect. The expected answer is 130
What is 33 + 19?
Your answer: 42
Incorrect. The expected answer is 52
What is 55 + 11?
Your answer: 66
Correct! You've gotten 1 correct in a row.
What is 84 + 25?
Your answer: 109
Correct! You've gotten 2 correct in a row.
What is 26 + 58?
Your answer: 74
Incorrect. The expected answer is 84
What is 98 + 85?
Your answer: 183
Correct! You've gotten 1 correct in a row.
What is 79 + 66?
Your answer: 145
Correct! You've gotten 2 correct in a row.
What is 97 + 20?
Your answer: 117
Correct! You've gotten 3 correct in a row.
Congratulations! You mastered addition.

When Chris was learning how to program, he wrote a number of similar programs to
practice math and language. He wrote the programs in the BASIC and Pascal languages
(go look them up -- that’s how old he is!), and now that he thinks about it, they were terribly
decomposed (he would do much better these days!)

 – 5 –

2. Computing Interest
We want to write a program compute_interest.py that helps a user compute how much
interest their bank account will accrue over time. The program starts by asking the user
for an initial account balance, which is entered as a float (you can assume a positive real-
value is entered). The program then asks the user for a starting year and month as well as
an ending year and month, all entered as integers. The program then asks the user for a
monthly interest rate. For example, a 2% interest rate would be entered by the user as the
value 0.02.

The program should print out the monthly balance in the account from the starting
year/month up to and including the ending year/month with interest accruing monthly. The
amount of interest earned each month is simply the amount in the account in that month
multiplied by the interest rate entered by the user. So (using a 2% interest rate) an account
with $1000.00 at the start of the month would earn $20.00 that month and have a total of
$1020.00 at the start of the next month.

After printing the monthly balance projection, your program should then repeat the process
of asking the user for a new interest rate and printing the monthly balance in the account
using the same starting account balance, starting year/month, and ending year/month as the
user initially entered in the program. The program should end if the user specifies a
monthly interest rate of 0%.

You can assume that the user will always enter a valid (i.e., positive) value for the start/end
year and an integer from 1 to 12 for the start/end month. If the starting year/month is the
same as or after the ending year/month, your program should not ask for an interest rate,
but rather simply print “Starting date needs to be before the ending date.” and then end
without an error.

The values for the initial balance, the starting year/month, and the ending year/month are
entered by the user. The monthly balance is simply printed as a float, so you don’t have to
worry about rounding to the nearest cent.

Remember that it’s a good idea to decompose your program and use parameters with
functions as needed to pass information around your program. That’s really part of good
programming style.

Two sample runs of the program are shown below (user input is in italics).

Sample run 1 (showing what happens if the user enters a starts year/month that is after the
ending year/month. Note the program simply ends without asking for an interest rate.)
Initial balance: 500.00
Start year: 2020
Start month: 9
End year: 2019
End month: 10
Starting date needs to be before the ending date.

 – 6 –

Sample run 2

Initial balance: 1000.00
Start year: 2020
Start month: 5
End year: 2022
End month: 3
Interest rate (0 to quit): 0.02
Year 2020, month 5 balance: 1000.0
Year 2020, month 6 balance: 1020.0
Year 2020, month 7 balance: 1040.4
Year 2020, month 8 balance: 1061.208
Year 2020, month 9 balance: 1082.43216
Year 2020, month 10 balance: 1104.0808032
Year 2020, month 11 balance: 1126.162419264
Year 2020, month 12 balance: 1148.6856676492798
Year 2021, month 1 balance: 1171.6593810022655
Year 2021, month 2 balance: 1195.0925686223109
Year 2021, month 3 balance: 1218.994419994757
Year 2021, month 4 balance: 1243.3743083946522
Year 2021, month 5 balance: 1268.2417945625452
Year 2021, month 6 balance: 1293.6066304537962
Year 2021, month 7 balance: 1319.478763062872
Year 2021, month 8 balance: 1345.8683383241296
Year 2021, month 9 balance: 1372.7857050906123
Year 2021, month 10 balance: 1400.2414191924245
Year 2021, month 11 balance: 1428.246247576273
Year 2021, month 12 balance: 1456.8111725277984
Year 2022, month 1 balance: 1485.9473959783543
Year 2022, month 2 balance: 1515.6663438979213
Year 2022, month 3 balance: 1545.9796707758796
Interest rate (0 to quit): 0.05
Year 2020, month 5 balance: 1000.0
Year 2020, month 6 balance: 1050.0
Year 2020, month 7 balance: 1102.5
Year 2020, month 8 balance: 1157.625
Year 2020, month 9 balance: 1215.50625
Year 2020, month 10 balance: 1276.2815624999998
Year 2020, month 11 balance: 1340.0956406249998
Year 2020, month 12 balance: 1407.1004226562497
Year 2021, month 1 balance: 1477.4554437890622
Year 2021, month 2 balance: 1551.3282159785153
Year 2021, month 3 balance: 1628.894626777441
Year 2021, month 4 balance: 1710.3393581163132
Year 2021, month 5 balance: 1795.8563260221288
Year 2021, month 6 balance: 1885.6491423232353
Year 2021, month 7 balance: 1979.9315994393971
Year 2021, month 8 balance: 2078.928179411367
Year 2021, month 9 balance: 2182.8745883819356
Year 2021, month 10 balance: 2292.0183178010325
Year 2021, month 11 balance: 2406.619233691084
Year 2021, month 12 balance: 2526.950195375638
Year 2022, month 1 balance: 2653.29770514442
Year 2022, month 2 balance: 2785.962590401641
Year 2022, month 3 balance: 2925.260719921723
Interest rate (0 to quit): 0

 – 7 –

Possible Extensions
Once you’ve completed all the required parts of the assignment, you might want to consider
adding some extensions.

Extend Khansole Academy
You could consider extending your Khansole Academy program to, for example, add more
problem types (subtraction, multiplication, division, and more). You could also consider
problems beyond arithmetic. If you could build your own version of Khansole Academy,
what would you use it to help people learn? Be creative and enjoy.

Hailstones
A separate (optional) problem you could consider writing is based on a problem in Douglas
Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach. That book contains many
interesting mathematical puzzles, many of which can be expressed in the form of computer
programs. In Chapter XII, Hofstadter mentions a wonderful problem that is well within
the scope of what you know. The problem can be expressed as follows:

Pick some positive integer and call it n.
If n is even, divide it by two.
If n is odd, multiply it by three and add one.
Continue this process until n is equal to one.

On page 401 of the Vintage edition of his book, Hofstadter illustrates this process with
thfollowing example, starting with the number 15:

 15 is odd, so I make 3n+1: 46
 46 is even, so I take half: 23
 23 is odd, so I make 3n+1: 70
 70 is even, so I take half: 35
 35 is odd, so I make 3n+1: 106
 106 is even, so I take half: 53
 53 is odd, so I make 3n+1: 160
 160 is even, so I take half: 80
 80 is even, so I take half: 40
 40 is even, so I take half: 20
 20 is even, so I take half: 10
 10 is even, so I take half: 5
 5 is odd, so I make 3n+1: 16
 16 is even, so I take half: 8
 8 is even, so I take half: 4
 4 is even, so I take half: 2
 2 is even, so I take half: 1

As you can see from this example, the numbers go up and down, but eventually—at least
for all numbers that have ever been tried—comes down to end in 1. In some respects, this
process is reminiscent of the formation of hailstones, which get carried upward by the
winds over and over again before they finally descend to the ground. Because of this
analogy, this sequence of numbers is usually called the Hailstone sequence, although it
goes by many other names as well.

 – 8 –

You might want to write a Python program that reads in a number from the user and then
displays the Hailstone sequence for that number, just as in Hofstadter’s book, followed by
a line showing the number of steps taken to reach 1. For example, here’s a sample run of
what such a program might look like (user input is in italics):

Enter a number: 17
17 is odd, so I make 3n + 1: 52
52 is even, so I take half: 26
26 is even, so I take half: 13
13 is odd, so I make 3n + 1: 40
40 is even, so I take half: 20
20 is even, so I take half: 10
10 is even, so I take half: 5
5 is odd, so I make 3n + 1: 16
16 is even, so I take half: 8
8 is even, so I take half: 4
4 is even, so I take half: 2
2 is even, so I take half: 1
The process took 12 steps to reach 1

