
Chris Gregg and Wil Kautz

CS 106A
Handout #11

July 14, 2020

Assignment #4: Lists and Sand
Due: 10:30am (Pacific Daylight Time) on Tuesday, July 21st

Based on problems by Nick Parlante and the current CS106A staff.

This assignment consists of a few different programs to give you practice with 1 and 2-

dimensional lists in Python. You can download the starter code for this project under the

“Assignments” tab on the CS106A website. The starter project will provide Python files

for you to write your programs in.

The assignment is broken up into two parts. The first part of the assignment focuses on

some problems to give you practice writing functions with lists. The second part of the

assignment is a longer program that uses 2-dimensional lists to simulate falling sand in a

larger program.

Part 1: Lists

1. “Sandcastle” (warm-up) problem

You should write a function called greater_than_10 (in the file greater10.py) that

is passed a list of integers and returns a new list which contains only the numbers greater

than 10 from the original list passed in. For example, if your function was called as follows:

greater_than_10([20, 6, 12, -3, 14])

then it should return the new list:

[20, 12, 14]

If your function is called with the empty list (or a list that does not contain any values

greater than 10), as follows:

greater_than_10([])

then it should return a new empty list:

[]

Doctests are provided for you to test your function. Feel free to write additional doctests

if you would like practice with that aspect of Python. Tests for your function are also

provided in the main function included in the program.

– 2 –

2. Reading values into a list and removing duplicates

In the file removeduplicates.py you should implement two functions. The first, called

read_list(), asks the user for a series of integers until the user enters 0 to stop. The

integers entered by the user (not including the final 0) should be stored in a list that the

function should then return. Here is a sample run of the user entering values (user’s inputs

are in italics) and what the function should return (internally) in the program:

Enter value (0 to stop): 5

Enter value (0 to stop): 3

Enter value (0 to stop): 6

Enter value (0 to stop): 2

Enter value (0 to stop): 7

Enter value (0 to stop): 6

Enter value (0 to stop): 3

Enter value (0 to stop): 3

Enter value (0 to stop): 0

If the user entered the values above, the function should return the list:

[5, 3, 6, 2, 7, 6, 3, 3]

The second function you should write (also in the file removeduplicates.py) is called

remove_duplicates(num_list). This function is passed a list of integers

(num_list) and it should create and return a new list which does not include any duplicate

values from the original list passed in. The original list passed into the function

(num_list) should not be changed. For example, calling:

remove_duplicates([5, 3, 6, 2, 7, 6, 3, 3])

should return the following new list:

[5, 3, 6, 2, 7]

If your function is called with the empty list, as follows:

remove_duplicates([])

then it should return a new empty list:

[]

Doctests are provided for you to test your remove_duplicates function. Feel free to

write additional doctests if you would like practice with that aspect of Python.

3. Zipping together two lists into a list of lists

In the file ziplists.py, implement the function zip2lists(list1, list2). This

function is passed two lists of strings (list1 and list2), where you can assume that both

lists both have the same length (number of elements). The function should return a new

list that "zips" together the two lists passed in. That is, the result should be a list that

– 3 –

contains lists that are pairs of elements, one from each of the original lists, in order. For

example, calling:

zip2lists(['a', 'b', 'c'], ['d', 'e', 'f'])

should return the following new list (of lists):

[['a', 'd'], ['b', 'e'], ['c', 'f']]

The original lists passed in should not be changed. If this function is passed two empty

lists, it should just return an empty list, since there would be no lists (of pairs) in the result.

In other words, calling:

zip2lists([], [])

should return the following empty list:

[]

You can think of that as a list that contains no lists as elements.

Doctests are provided for you to test your zip2lists function. Feel free to write

additional doctests if you would like to more thoroughly test your code.

Part 2: Sand

For the second part of this assignment, you will write a program called sand.py, that uses

2-dimensional lists to to implement a kind of 2-dimensional world of sand. When the

program is working, it's kind of fun to play and watch (in its low-key way).

The starter code handles setting up the program window with a user interface, handling the

controls and drawing, that allows the user to interact with the program, and. Although the

implementation of the user interface (including the drawing) is provided for you, all the

logic that makes the world work will be built by you. Here’s a screen shot so you’ll have

some early sense of what you will be building:

– 4 –

Decomposition

This is a big program, and we want the advantage of using decomposition to solve this

problem in bite-sized chunks. So, we will build the program up as a series of decomposed

functions. We can leverage Python Doctests, testing each function in isolation before

moving on to the larger functions. You need to write 5 functions to make the program work.

2-Dimensional list

The Sand world is represented using a 2-dimensional list (i.e., list of lists) that is treated as

a grid to keep track of the elements in the Sand world. Each element (which you can think

of as a square) in the Sand world holds one (and only one) of three things:

1. Sand, represented by the string 's'

2. Rock, represented by the string 'r'

3. Empty, represented by None. (This is the Python’s None, not a string)

Here is a visual representation of a 3 by 2 grid (i.e., list of lists) with some rocks and one

sand. The sand 's' is in the 0th row, 1st column (equivalently, x = 1, y = 0. Recall that y

represents the row number and x is the column number). The 0th row (y = 0) is the top row.

'r' 's' 'r'

'r' 'r'

This visual representation of a grid would actually be represented by a list of lists, as

follows:
[['r', 's', 'r'], ['r', None, 'r']]

Note the use of None to denote the blank cell in the grid.

If we move the sand down from row 0, column 1 (x = 1, y = 0) to row 1, column 1 (x = 1,

y = 1) the grid would looks like this:

'r' 'r'

'r' 's' 'r'

This grid would be represented by the list of lists, as:

[['r', None, 'r'], ['r', 's', 'r']]

Moving sand down by one square like this is the central operation of this game.

– 5 –

You should write your code in the following five stages:

1. Task: Moving elements in the grid

Function: do_move(grid, x1, y1, x2, y2)

Write the code for the do_move function. This function is passed a grid (list of

lists, representing the sand world, as described above) and two x, y coordinate pairs:

x1, y1 and x2, y2. The function should update the grid by moving the contents of

the grid element at position x1, y1 into the element at position x2, y2 (overwriting

whatever value might have previously been there). That means you should also

update the element at position x1, y1 to reflect that this cell in the grid is now

Empty. You can assume that your function is only called with parameters for

"legal" moves, that is, you can assume that all coordinates given to you are in the

bounds of the grid and that the element at position x2, y2 starts Empty. Your

function should return the updated grid. You may be wondering why your function

needs to return the updated grid if changes you make to the grid parameter will

persist after this function is done. The reason is that we provide Doctests for your

function and these tests work by examining what is returned by the function. So,

for the Doctests to work, your function needs to return the updated grid. You should

use these Doctests to test that your implementation works before you move on.

The code for do_move is short, but it is good example of using Doctests to try out

test cases. In this case, the two Doctests are provided. Feel free to add others to

more thoroughly test your code. Doctest pro-tip: you can run a Doctest by right-

clicking (on PC) or Ctrl-clicking (on Mac) on the Doctest text in PyCharm and

selecting the "Run Doctest …" option from the menu that pops up. Running a

Doctest again and again is the common pattern as you work out each function.

For example, the first Doctest (shown below) tests moving the 's' at the location

(x = 1, y = 0) down to location (x = 1, y = 1).

 >>> grid = [['r', 's', 's'], [None, None, None]]

 >>> do_move(grid, 1, 0, 1, 1)

 [['r', None, 's'], [None, 's', None]]

Here is what the three lines of the Doctest do:

1. grid = [['r', 's', 's'], [None, None, None]]

This sets up a grid variable for the next 2 lines. The grid is tiny: width is 3 and

height is 2, just enough to write a little test.

2. do_move(grid, 1, 0, 1, 1)

This line calls your do_move function, moving the 's' at location (1,0) to

location (1,1). The function returns the changed grid.

3. The third line shows what the grid should look like post-move:
[['r', None, 's'], [None, 's', None]]

– 6 –

The Doctest machinery verifies that the result returned by the do_move function

matches this written state.

IMPORTANT NOTE (definitely read this and understand it before writing

your code for this assignment):

Recall that when you access elements of a lists of lists, the first index represents the

row, which is the y coordinate. The second index represents the column, which

is the x coordinate. That's in the reverse order than we usually think of when

dealing with (x, y) coordinates. To be more explicit, to access the element at

location (x = 1, y = 0), you would refer to grid[0][1]. Note that the coordinates

are in reverse order from how you might think to write them (the y coordinate

comes first, then the x coordinate). It's important to keep this point clear while you

are developing your code for this assignment.

2. Task: Checking legal moves

Function: check_move(grid, x1, y1, x2, y2)

Write the code for the check_move function. The check_move function is given

a prospective starting (x1,y1) location and ending (x2,y2) for a potential move,

and returns True if the move is okay, or False otherwise. The grid is not changed

by this operation.

Here are the comments describing what the check_move function does:

def check_move(grid, x1, y1, x2, y2):

 """

 Given grid, starting point (x1,y1) and destination (x2,y2).

 Check if it's possible to move the value at (x1,y1) to (x2,y2).

 The (x1,y1) location is always in bounds of the grid, but (x2,y2)

 may not be.

 Return True if the move is okay, or False otherwise.

 Okay move: (x2,y2) in bounds, empty, and not violating corner rule.

 """

We'll call location (x2,y2) the "destination" of the move. In the Sand world, there

are five possible moves: left, right, down, down-left, and down-right. Here are the

rules for a legal move:

Rule 1. The destination must be within the edges of the grid.

Three Doctests for this rule are provided. These tests build a 1 row by 1 column

grid, checking that a few out-of-bounds moves return False.

>>> # Provided out-of-bounds tests

>>> # Make a 1 by 1 grid with an 's' in it to check in-bounds cases

>>> grid = [['s']]

>>> check_move(grid, 0, 0, -1, 0) # left blocked

False

>>> check_move(grid, 0, 0, 0, 1) # down blocked

False

>>> check_move(grid, 0, 0, 1, 1) # down-right blocked

False

– 7 –

Rule 2. The destination square in the grid must be empty.

Consider the situation shown below:

's'

'r'

Note: this grid would be represented by a list of lists, as:

[[None, 's', 'r'], [None, None, None]]

Above is a picture of a single 's' at location (1,0) in a 3 by 2 grid. The move left

to location (0,0) and the move down to location (1,1) are both okay (return True).

The move right to location (2,0) is bad, since it's blocked the 'r' (rock) there

(return False).

Rule 3. For a diagonal down-left or down-right move, the corner square must be

empty (that is, it should contain None).

Consider the down-left and down-right diagonal moves of the 's' in this situation:

's'

'r'

The "corner" rule: for a down-left or down-right move, the corner square above the

destination must also be empty. So, in the picture above, the down-left is okay

since location (0,0) is empty, but down-right is bad due to the 'r' (rock) at location

(2,0). Sand ('s') at location (2,0) would also block the move.

check_move Doctests

The starter code includes five tests for left, right, down, down-left and down-right

moves, respectively, in a 3 by 2 world:

>>> # check of left move from (1,0)

>>> grid = [[None, 's', 'r'], [None, None, None]]

>>> check_move(grid, 1, 0, 0, 0) # left ok

True

>>> # check of right move from (1,0)

>>> check_move(grid, 1, 0, 2, 0) # right blocked

False

>>> # check of down move from (1,0)

>>> check_move(grid, 1, 0, 1, 1) # down, ok

True

>>> # check of down-left move from (1,0)

>>> check_move(grid, 1, 0, 0, 1) # down-left ok, corner rule

True

>>> # check of down-right move from (1,0)

>>> check_move(grid, 1, 0, 2, 1) # down-right blocked, corner rule

False

– 8 –

These Doctests will be very helpful for you to find bugs in your code before you

move on to the next step.

check_move code

There are many reasonable ways to structure your code for the check_move

function. Obviously the one requirement is that the code returns the correct answer

for all cases. Our solution has a single return True at the bottom of the function,

and many if ... return False statements detecting the various cases where the

move is bad. Use the Doctests as you work out the code.

Note that it's fine to use == and != in comparisons like this:
if x != None:

Disregard warnings PyCharm gives you about that line. The warnings, in this case,

are misguided. PyCharm is pretty good, but it's not perfect.

3. Task: Gravity

Function: do_gravity(grid, x, y)

Write the code for the do_gravity function. The do_gravity function simulates

the effect of gravity in the Sand world. Here's the basic set-up. Consider an (x,y)

location in the grid. This function implements one "gravity" move for whatever is

at that (x,y) location as shown below. In the gravity algorithm, the moves should

be handled in a specific order:

1. If there is not a sand 's' at location (x,y), do nothing, the move is over.

2. down: if the sand can move down, do it, this ends the move.

3. down-left: otherwise if the sand can move down-left, do it, this ends the move.

4. down-right: otherwise if the sand can move down-right, do it, this ends the move.

In all cases, return the grid when the function is done. As we talked about earlier

in this assignment, you need to return the grid here so that the Doctests for this

function work appropriately.

Use the helper functions you wrote in the previous steps help do the work. That is

the key to this function. How can you tell if the way is clear for the sand to move,

for example, down? We provide a rich set of Doctests for this function, but of

course you still need to write the code to actually solve the problem. You are always

free to add more Doctests if you like.

The header for the function, comments describing it, and the Doctests provided in

the starter code are shown below for reference.

– 9 –

def do_gravity(grid, x, y):

 """

 Given grid and an in-bounds (x,y). If there is a sand at that (x,y)

 location, then try to make one move, trying them in this order:

 move down, move down-left, move down-right.

 Return the grid in all cases.

 (tests provided)

 >>> # not sand

 >>> grid = [[None, 's', None], [None, None, None]]

 >>> do_gravity(grid, 0, 0)

 [[None, 's', None], [None, None, None]]

 >>>

 >>> # down

 >>> grid = [[None, 's', None], [None, None, None]]

 >>> do_gravity(grid, 1, 0)

 [[None, None, None], [None, 's', None]]

 >>>

 >>> # bottom blocked

 >>> grid = [[None, 's', None], ['r', 'r', 'r']]

 >>> do_gravity(grid, 1, 0)

 [[None, 's', None], ['r', 'r', 'r']]

 >>>

 >>> # rock-below down-left

 >>> grid = [[None, 's', None], [None, 'r', None]]

 >>> do_gravity(grid, 1, 0)

 [[None, None, None], ['s', 'r', None]]

 >>>

 >>> # sand-below down-right

 >>> grid = [[None, 's', None], ['s', 's', None]]

 >>> do_gravity(grid, 1, 0)

 [[None, None, None], ['s', 's', 's']]

 >>>

 >>> # sand corner: down-right

 >>> grid = [['s', 's', None], [None, 's', None]]

 >>> do_gravity(grid, 1, 0)

 [['s', None, None], [None, 's', 's']]

 >>>

 >>> # at bottom already

 >>> grid = [[None, None, None], [None, 's', None]]

 >>> do_gravity(grid, 1, 1)

 [[None, None, None], [None, 's', None]]

 """

4. Task: Loop through the whole grid

Function: do_whole_grid(grid, brownian)

The next step is to write the code for the do_whole_grid function. For the

moment, ignore the brownian parameter which is handled in a later step.

Write code for the do_whole_grid function which just calls do_gravity once

for every (x,y) location in the grid. The function should return the grid when it is

done (again, the reason for this is to have some result returned from the function

for Doctests to compare against). You might consider testing out your code for this

function by writing some Doctests. For example, you could have a test that uses a

– 10 –

3x3 world with sand in just the top row. If you do write such Doctests, you could

just use the value 0 for the brownian parameter.

Important note on looping through the grid: The standard y/x nested for loops

to loop through the coordinates of a grid from the top row downward are usually

fine for working with grids. However, in this case, it is important to reverse the y-

direction to have the loop go bottom-up. That is, you should visit the bottom row

(which is at y = height-1) first and the top row (which is at y = 0) last. In this

situation, it might be helpful to use the reversed function. The reversed

function can be applied to a range to generate the elements of that range in

reverse order. Here is an example of using the reversed function on a range in

a for loop:

for i in reversed(range(3)):

 print(i)

The code above would produce the following output:

2

1

0

What's wrong with regular top-down order of going through rows? Suppose the

loops went top-down, and at row y=0, a sand moved from y=0 down to y=1 by

gravity. Then when the loop got to y=1, that sand would get to move again. Going

bottom-up avoids this problem.

Try testing your do_whole_grid function (with Doctest) to see that your code is

working correctly.

Note: the do_whole_grid function just does one pass over the whole grid in the

Sand world, calling do_gravity (and later, after you implement the next step,

do_brownian) a single time for each square. The provided GUI code calls your

do_whole_grid function again and again (when the gravity checkmark is

checked) to run the whole simulation.

Milestone: Run sand.py

With your functions tested, you can try running the whole program. Gravity should

work, but "Brownian" is not done yet. Normally when a program runs the first

time, there are many problems. But here we have leaned on decomposition and

testing of the pieces as they were built, so there is a chance your code will work

perfectly the first time. If your program works the first time, try to remember the

moment. More typically, new code is not so well tested and so exhibits many

problems when run the first time.

Bring up the terminal and run the program like this (no command line arguments

are required, on the Mac its "python3"):

py sand.py

– 11 –

When the Sand window comes up, you can click (and hold the mouse) anywhere in

the window to start generating "sand" in the simulation. The radio-buttons for

"Sand", "Rock", "Erase", and "Big Erase" allow you to generated different effects

when you select them and the click in the window (allowing you to create rocks

and also erase existing sand/rocks). You can turn on/off Gravity and Brownian

motion using the respect checkboxes.

5. Task: Create Brownian motion

Function: do_brownian(grid, x, y, brownian)

Now for that last little bit of algorithm. Brownian motion

(https://en.wikipedia.org/wiki/Brownian_motion) is a real physical process,

documented first by Robert Brown, who observed tiny pollen grains jiggling around

on his microscope slide.

We'll say that the "Brownian" move for an (x,y) location means that there is a

probability that sand at that location will randomly move just a little bit — one

square left or right. The "brownian" parameter is an integer (int) in the range 0 to

100 inclusive: 0 means never do a brownian move, 100 means always do a

brownian move. This value is taken in real-time from the little slider at the top of

the Sand application window. This function does not have tests (randomness and

tests are an awkward combination).

Here are the steps for implementing Brownian motion in the sand world:

1. Check if the square is sand. Proceed to the next steps only if it is sand. If it is

not sand, the square does not have Brownian motion.

2. Create a random number in the range 0 to 99. Note that the Python function

random.randrange(n) (from the random library) returns a random number

uniformly distributed in the range from 0 to n – 1, inclusive. So, you could use

the following call:

num = random.randrange(100)

Proceed to step #3 below only if num < brownian (recall that brownian is a

parameter to this function). In this way, for example, if brownian is 50, we'll

do the Brownian move about 50% of the time.

3. To try to move left or right, set a "coin" variable like a coin flip with the

following line. This line sets coin to either 0 or 1:

coin = random.randrange(2)

4. If coin is 0, try to move the sand at the current (x,y) location one cell to the

left. If coin is 1, try to move the sand at the current (x,y) location one cell right.

Use your helper functions to check if the move is possible and then move the

sand if the move is legal. Don't try both directions. Based on the coin flip, you

choose one direction for the sand at this location and see if it can move (and

move it if it can).

https://en.wikipedia.org/wiki/Brownian_motion

– 12 –

6. Task: Add Brownian motion to do_whole_grid

After you have completed Task #5 above to implement the do_brownian function,

you should edit the loop body in do_whole_grid so that after calling

do_gravity for an (x,y) location, it also calls do_brownian for that (x,y)

location.

Now, try running the Sand program, and make sure the Brownian checkbox in the

application is switched on. Hopefully, you'll see a lively, less artificial look. Play

around with the slider (next to the Brownian checkbox) to create different levels of

Brownian motion.

Running with Different Sizes

You can provide two command line arguments (numbers) to specify the number of squares

wide and high that the grid should be in the Sand simulation. The default is 50 by 50

squares. The following line would run the Sand simulation using a grid that is 100 by 50

squares:

py sand.py 100 50

An optional third command line argument specifies how many pixels wide each square

should be. The default value is 14. For example, the following line would run the Sand

simulation with a 100 by 50 square grid, where each square was just 4 pixels:

py sand.py 100 50 4

A sample picture from such a world is shown below.

– 13 –

Lots of Computation!

The Sand program is pretty demanding on your computer – it's a lot of computation run

continuously. You may notice the fans on your laptop spinning up. At the upper right of

the window is a little gray number, which is the frames-per-second (fps) the program is

achieving in the sand animation at that moment (for example, it is 44 in the picture above).

The animation has a nice, fluid look when the fps is higher.

The more grid squares there are, and the more grains of sand there are, the slower the

program runs. For each gravity round, your code needs to at least glance at every square

and every grain of sand, and we want to do that 40 times per second. Play around with

different grid and pixel sizes to try out the different aesthetics.

Submitting Your Work

Once you've gotten all the parts of this assignment working, congratulations! And with the

Sand program, you just built a pretty nice simulation with complex logic and some neat

output.

Make sure to submit all the python files for this assignment on Paperless. You should

make sure to submit the files:

greater10.py
removeduplicates.py
ziplists.py

sand.py

Additionally, in the Assignment 4 project folder, we have provided a file called

extension.py that you can use if you want to write any extensions that you might want

to make based on this assignment. The file doesn't contain any useful code to begin with.

So, you only need to submit the extension.py file if you've written some sort of

extension in that file that you'd like us to see.

Acknowledgements: The Sand portion of this assignment is based on the "Falling Sand"

assignment by Dave Feinberg at the Stanford Nifty Assignment archive

(http://nifty.stanford.edu/). Nick Parlante re-built a version of that assignment in Python,

adding tests and decomposition. The assignment was then modified for use in the current

CS106A class by your CS106A staff.

http://nifty.stanford.edu/

