Chris Gregg and Wil Kautz Handout #12
CS 106A July 21st, 2020

Assignment #5: Strings and Word Guessing
Due: 1:30pm (Pacific Daylight Time) on Tuesday, July 28th

Based on problems by Eric Roberts, Nick Parlante, and the current CS106A staff.

This assignment will give you the opportunity to get lots of practice using strings as well
as start to work with dictionaries (you'll get a lot more practice with dictionaries on
assignments 6 and 7 as well). You can download the starter code for this project under the
“Assignments” tab on the CS106A website. The starter project will provide Python files
for you to write your programs in.

As usual, the assignment is broken up into two parts. The first part of the assignment
focuses on some problems to give you practice writing functions with strings and
dictionaries. The second part of the assignment is a longer program that uses strings to
play a word guessing game (similar to the game Hangman, if you're familiar with that
game). This is a complex task, but armed with the skills you've been honing, especially
using decomposition, you’ll sail through.

Part 1: Strings and Dictionaries

1. String encoding

A simple means for trying to compress text with many repeated characters is to use
something known as run-length encoding. The idea is that rather than representing every
character in a string explicitly, we instead simply have each character immediately
followed by a digit which denotes how many times that character should be repeated. For
example, the string 'B4' would represent the string 'BeBB' as the character B is to be
repeated 4 times. Similarly, the string 'm1e2t1' would represent 'meet', as the character
m iS to be repeated 1 time, followed by the character e which is to be repeated 2 times,
followed by the character t is to be repeated 1 time. Thus, the general format for run-
length encoded strings is a series of pairs, where each pair contains a single character
followed immediately by a single digit (1 through 9 only, the digit will never be 0). The
digit denotes the number of consecutive occurrences of the character immediately before
it in the encoded string.

Your job is to write a function named expand encoded_string in the file
encoded_string.py that takes as a parameter a called encoded, which is a string
representing the run-length encoded text, and returns a string which is the expanded version
of the text.

For example, if you call:

expand_encoded_string('Blo2k2e2plelrl!3’')
your function should return the string:
" 'Bookkeeper!!!'

as the result.

2

Doctests are provided for you to test your function. Feel free to write additional doctests
if you would like practice with that aspect of Python. Also, feel free to write any additional
functions that may help you solve this problem. Tests for your function are provided in
the main function included in the program.

2. Totaling credit card bill by store

Realizing that keeping track of credit card expenses is a particularly good use of your
computer science skills, you decide to write a program that helps you track how much
money you are spending at each store in a given month. Your program should read a data
file (given by the constant named INPUT_FILE), which contains your credit card bill for a
given month. Each line of the credit card bill represents one transaction. Each line starts
with the date of the purchase, followed by a space, then the name of the store enclosed in
square brackets, like so: [name] (you can assume no store names contain square bracket
characters and store names also do not include the dollar sign ($) character), followed by a
space, and then a dollar sign, and then the amount of the purchase (as an integer, since we
assume here that transactions are just rounded to a whole dollar amount). A sample data
file (billl. txt) representing a credit card bill looks as follows:

File: billl. txt

9/2/19 [Target] $12

9/21/19 [Stanford Bookstore] $102
9/30/19 [Jamba Juice] $5

10/7/19 [Target] $17

10/22/19 [Jamba Juice] $8
10/28/19 [Target] $45

In the file credit_card_total.py, you should write a program reads such a credit card
bill file and prints to the screen the fotal amount that was purchased at each store on the
bill. For example, given the input file bil1ll. txt (above), your program should print the
output:

Target: $74
Stanford Bookstore: $102
Jamba Juice: $13

The output printed by your program should match the sample output as closely as possible,
but you don't need to worry about the order in which the stores are printed. You can assume
that the input file is properly formatted (as described above). Two sample input files
(billl.txt and bill2. txt) are provided in the assignment project folder to help you test
your program. The output of your program using the file bi112. txt as input should be
(again, you don't need to worry about the ordering of the stores in the output):

Shake Shack: $16
Grocery Hut: $293
Ace Hardware: $14
Joan's Fabric: $18
Nom Nom Nom: $12

Hint: using dictionaries would be a really good way to solve this problem!

Part 2: Word Guessing

For the second part of this assignment, your mission is to write a program that plays a word
guessing game. This game is also some times called "Hangman", but we'll just call it
"WordGuess" here. The WordGuess program is designed to give you some practice
working with strings and files.

The WordGuess game

When the user plays WordGuess, the computer first selects a secret word at random from
a list built into the program. The program then prints out a row of dashes—one for each
letter in the secret word and asks the user to guess a letter. If the user guesses a letter that
is in the word, the word is redisplayed with all instances of that letter shown in the correct
positions, along with any letters correctly guessed on previous turns. If the letter does not
appear in the word, the user is charged with an incorrect guess. The user keeps guessing
letters until either (1) the user has correctly guessed all the letters in the word or (2) the
user has made eight incorrect guesses. Two sample runs of the game are shown below (user
input is shown in italics).

Sample Run 1:

The word now looks like this: -----
You have 8 guesses left

Type a single letter here, then press enter: a
That guess is correct.

The word now looks like this: -A---

You have 8 guesses left

Type a single letter here, then press enter: (
There are no Q's in the word

The word now looks like this: -A---

You have 7 guesses left

Type a single letter here, then press enter: P
That guess is correct.

The word now looks like this: -APP-

You have 7 guesses left

Type a single letter here, then press enter: C
There are no C's in the word

The word now looks like this: -APP-

You have 6 guesses left

Type a single letter here, then press enter: H
That guess is correct.

The word now looks like this: HAPP-

You have 6 guesses left

Type a single letter here, then press enter: Y
That guess is correct.

Congratulations, the word is: HAPPY

Sample Run 2:

The word now looks like this: ------
You have 8 guesses left

Type a single letter here, then press enter: a
There are no A's in the word

The word now looks like this: ---—-—-—-

You have 7 guesses left

Type a single letter here, then press enter: P
That guess is correct.

The word now looks like this: P-----

You have 7 guesses left

Type a single letter here, then press enter: H
That guess is correct.

The word now looks like this: P--H--

You have 7 guesses left

Type a single letter here, then press enter: (
There are no G's in the word

The word now looks like this: P--H--

You have 6 guesses left

Type a single letter here, then press enter: M
There are no M's in the word

The word now looks like this: P--H--

You have 5 guesses left

Type a single letter here, then press enter: (
There are no Q's in the word

The word now looks like this: P--H--

You have 4 guesses left

Type a single letter here, then press enter: d
There are no D's in the word

The word now looks like this: P--H--

You have 3 guesses left

Type a single letter here, then press enter: L
There are no L's in the word

The word now looks like this: P--H--

You have 2 guesses left

Type a single letter here, then press enter: E
There are no E's in the word

The word now looks like this: P--H--

You have 1 guesses left

Type a single letter here, then press enter: [
There are no R's in the word

Sorry, you lost. The secret word was: PYTHON

In order to write the program that plays WordGuess, you should design and test your
program in two parts. The first part consists of getting the interactive part of the game
working with a fixed set of secret words (that are initially provided for you). The second
part consists of replacing the supplied version of the secret word list with one that reads
words from a file. The rest of this handout describes these two parts in more detail.

5

Note that your program only needs to be able to play the WordGuess game once through
(i.e., the player guessing one word), but it should be pretty easy to extend your program to
allow the player to play multiple rounds (i.e., guessing a word multiple times).

WordGuess Game: Part [—Playing the game

In the first part of this assignment, your job is to write a program that handles the user
interaction component of the game. To solve the problem, your program must be able to:

* Choose a random word to use as the secret word. That word is chosen from a word list,
as described below. (An initial implementation of this is provided for you.)

» Keep track of the user’s partially guessed word, which begins as a series of dashes and
then gets updated as correct letters are guessed.

* Implement the basic control structure and manage the details (ask the user to guess a
letter, keep track of the number of guesses remaining, print out the various messages,
detect the end of the game, and so forth).

For this part of the assignment, you will simply make use of a function that we’ve given
you called get_word that returns a word (string) randomly chosen from a small list of
words that will allow you to test your program. The initial code you are provided for the
get_word function is only a temporary expedient to make it possible to code this part of
the assignment. In Part II, you will reimplement the get_word function we’ve provided
with one that reads a list of words from a data file in order to select the random word from
a much larger set of possibilities.

The game
The two sample runs shown previously should be sufficient to illustrate the basic operation
of the game, but the following points may help to clarify a few issues:

* In the main function, we call the get_word function to get a secret word for the user to
guess, store it in a variable named secret_word and then pass that secret_word to a
function called play game. For this part of the assignment, you should implement the
play game function, along with any additional functions that are needed to properly
decompose the program, to produce a working game.

* You should accept the user’s guesses in either lower or upper case, even though all
letters in the secret words are written in upper case.

+ If the user guesses something that is more than a single character, your program should
tell the user that the guess should only be a single letter and accept a new guess. It
should not count the guess that was more than a single character as an incorrect guess.
Here's an example of what that interaction should look like (where the user enters the
guess AA). Notice that the user's guess did not reduce the number of guesses they have
remaining.

The word now looks like this: ------

You have 8 guesses left

Type a single letter here, then press enter: AA
Guess should only be a single character.

The word now looks like this: ------

You have 8 guesses left

Type a single letter here, then press enter:

—6—

 If the user guesses a correct letter more than once, your program should do nothing
(basically, it's just another correct guess, so the number of guesses left is not reduced).
Guessing an incorrect letter a second time should be counted as another wrong guess.
(In each case, these interpretations are the easiest way to handle the situation, and your
program will probably do the right thing even if you don’t think about these cases in
detail.)

 If the user guesses a character, such as a period (.) or exclamation point (!), that is not
a letter (and therefore would not be in the secret word), you can just count that as an
incorrect guess.

» The number of guesses the player initially starts with is determined by the constant
INITIAL GUESSES.

WordGuess Game: Part II—Reading a word list from a file

Part II is much easier than Part I and requires less than half a page of code. Your job in
this part of the assignment is simply to re-implement the get_word function so that instead
of being hard-coded to select from a meager list of three words, it reads a much larger word
list from a file and returns a word from that list. The steps involved in this part of the
assignment are as follows:

1. Reimplement the get_word function so that it opens the file specified by the constant
LEXICON_FILE and reads it line by line.

Read the lines from the file into a list.

3. Using that list of words, randomly return any word in the list from the get _word
function. You can feel free to define additional helper functions if you need to, but it's
likely that all the code you need to implement this functionality will fit nicely in the
get_word function itself.

Note that nothing in the rest of the program should have to change in response to this
change in the implementation of get_word. Insulating parts of a program from changes in
other parts is a fundamental principle of good software design. Thus, in your
implementation of the get word, you should not be changing the parameters of this
function.

As a side note, the file Lexicon. txt contains a very large list of words that can used to
make the game more challenging to play, and the final version of your program should use
that file for input. But to help you test this part of your program, we also provide a much
smaller word list in the file TestLexicon.txt. You can feel free to use the
TestLexicon. txt file to help you develop/debug your reimplementation of the get word
function, but make sure the final version of your program works properly with the full
Lexicon. txt file.

Hint: remember to use the strip function when reading the file to avoid any nasty
complications arising from newline characters at the end of lines.

IMPORTANT NOTE: Make sure your output matches that in the sample runs as closely
as possible.

Extension ideas

There are many ways to extend the WordGuess game to make it more fun if you want. Of

course, we encourage you to some up with your own ideas, but here are a few possibilites:

* You could use graphics to spice up the display. For example, you could use graphics to
have this program emulate the game "Hangman" where a person (stick figure) is
displayed part by part with each incorrect guess the user makes. You could even go
further and animate the pictures.

* You could expand the program to play something like Wheel of Fortune, in which the
single word is replaced by a common phrase and in which you have to buy vowels.

+ Use your imagination!

Submitting your work
Once you've gotten all the parts of this assignment working, congratulations! You've now
also got a fun game that you can play.

Make sure to submit all the python files for this assignment on Paperless. You should
make sure to submit the files:

encoded string.py
credit _card total.py
word guess.py

Additionally, in the Assignment 5 project folder, we have provided a file called
extension.py that you can use if you want to write any extensions that you might want
to make based on this assignment. The file doesn't contain any useful code to begin with.
So, you only need to submit the extension.py file if you've written some sort of
extension in that file that you'd like us to see.

