Chris Gregg and Wil Kautz Handout #14
CS 106A July 28, 2020

Assignment #6: Dictionaries and Baby Names
Due: 10:30am (Pacific Daylight Time) on Tuesday, August 4th

Based on problems by Nick Parlante, Nick Bowman, Sonja Johnson-Yu, Kylie Jue, Brahm Capoor, Chris Piech, and Mehran Sahami.

This assignment will give you lots of practice with dictionaries and also show you how
they can be used in combination with graphics to make a nice data visualization application.
You can download the starter code for this project under the “Assignments” tab on the
CS106A website. The starter project will provide Python files for you to write your
programs in.

As usual, the assignment is broken up into two parts. The first part of the assignment is a
short problem to give you more focused practice writing a function with dictionaries. The
second part of the assignment is a longer program that uses dictionaries to store information
about baby name popularity, which can be graphed over time. This program is an example
of data visualization, which has become a very powerful tool for helping people gain useful
insights in a number of different domains.

Part 1: Dictionaries

1. Dictionaries with lists

This problem will give you practice reading a file to create a dictionary where keys are
strings and values are a list of numbers, and then doing some computation with that
dictionary. Doing this problem will give lots of direct practice with concepts that will come
up in the second part of this assignments as well. You should write your code for this
problem in the file data_analysis.py.

Given the current health crisis, say we want to analyze some data on disease infections at
different locations. We are given a data file, where on each line we start with the name of
a location, and then we have seven values (integers) that indicate the cumulative number
of cases of a disease found at that location over the first seven days, respectively, that the
disease has been detected at that location. The values on each line separated by commas,
but there can be an arbitrary number of spaces between each value and each comma. For
example, we might have the data file diseasel . txt shown below:

Evermore , 1, 1, 1, 1, 1, 1, 1
Vanguard City,1 ,2 ,3 ,4 ,5 ,6 ,7
Excelsior ,1,1, 2, 3, 5, 8, 13

This file has data for three (fictional) locations (Evermore, Vanguard City, and Excelsior),
and each location has seven values representing the cumulative (total) number of cases of
the infection at that location over seven subsequent days. For example, in Evermore, there
was 1 case found on the first day, and then no new cases for the next six days (so the
cumulative number of cases remained 1 throughout all the days). On the other hand, in
Vanguard City, on the first day one new case was detected and, on each subsequent day
(for the next six days), one new case was detected each day. As a result, the cumulative
number of cases increases by one each day.

2

You can assume that the location names in the file are all unique. In other words, you'll
never get two lines that have the same location name at the beginning.

Part A: Reading the file
For the first part of this problem, your task is to write the following function:

def load data(filename)

The function takes in the name of a datafile (string), which has the format for a data file
described above. The function should return a dictionary in which the keys are the names
of locations in the data file, and the value associated with each key is a list of the (integer)
values presenting the cumulative number of infections at that location.

For example, if you were passed the filename 'diseasel. txt' (which is the file shown
previously), your function should return the following dictionary:

{'Evermore': [1, 1, 1, 1, 1, 1, 1],
'Vanguard City': [1, 2, 3, 4, 5, 6, 7],
'Excelsior': [1, 1, 2, 3, 5, 8, 13]}

Note that the function strip () applied to a string is useful both for removing the
"newline"” character (\n) at the end of a line in a file as well as removing extra spaces at
the start/end of a string. So, if we had the string:

sl = ' example of stripping spaces '

and we called:
s2 = sl.strip()

then s2 would have the value 'example of stripping spaces' (without the spaces
at the start/end of the string).

A doctest is provided for you to test your function. Feel free to write additional doctests.
Also, feel free to write any additional functions that may help you solve this problem. We
provide two sample files (' diseasel. txt' and 'disease2. txt ') to help you test your
code.

Part B: Calculating the number of infections per day
Once you have the 1oad_data function working, the second part of this problem requires
that you write the following function:

def daily cases(cumulative)

The function takes in a dictionary of the type produced by the 1oad_data function (i.e.,
keys are locations and values are lists of seven values representing cumulative infection
numbers). The function should return a new dictionary in which the keys are the same
locations as in the dictionary passed in, but the value associated with each key is a list of

the seven values (integers) presenting the number of new infections each day at that

location. So, given the dictionary shown above (produced from the file
'diseasel. txt'), your function should return the dictionary shown below.

{'Evermore': [1, O, O, O, O, O, O],
'Vanguard City': [1, 1, 1, 1, 1, 1, 1],
'Excelsior': [1, O, 1, 1, 2, 3, 5]}

Note that Evermore, for example, had 1 case the first day, but then no additional new cases
on any subsequent days. Vanguard City, on the other hand, had one new case every day.

Hint: For every day, except the first, you can determine the number of new cases by
subtracting the cumulative number of cases on the day before from the cumulative number
of cases on that day.

Doctests are provided for you to test your function. Feel free to write additional doctests.
Also, feel free to write any additional functions that may help you solve this problem. A
main function is also provided, which calls your functions and prints the results.

Part 2: Baby Names

For the second part of this assignment, your mission is to write a program called
BabyNames that helps the user visualize the popularity of baby names in the U.S. over
time. The BabyNames program is designed to give you practice working with more
complex data structures involving dictionaries and lists as well as graphics. More
specifically, BabyNames is a program that graphs the popularity of U.S. baby names from
1900 through 2010. It allows the user to analyze interesting trends in baby names over
time. A screenshot of the working program that you will build is shown in Figure 1 below.

Baby Names Solution - O x

MNames: |Heathar Ethel Brittany ‘l

Fthel 8

Ethel 30

Ethel 65 Brittany 61

Ethel 106

ather 125

Ethel 176

eather 298

Ethel 359

Brittany 428
eather 451

Ethel £89 Heather 682

Brittany * Brittany * Brittany * rittany * Ethel * Ethel * Ethel * Ethel *
1340 1950 1960 1970 1980 1990 2000 2010

Elettbmer * Bietiter *
1900 1910

Evle Kylie Kyla Kylene Skyler Eylee Skylar Eyler Eyleigh Skyla Kylan K
vlah

Figure 1: Sample run of the Baby Names program (with plotted names "Heather," “Ethel”
and "Brittany"). The bottom of the window shows names that appear when searching for
names containing “Ky”.

Search: |Ky

_4—

The rest of this handout will be broken into several sections. First, we provide an overview
describing how the data itself is structured and how your program will interact with the
data. All of the subsequent sections will break the problem down into more manageable
milestones and further describe what you should do for each of them:

1.

Add a single name (data processing): Write a function for adding some partial

name/year/count data to a passed in dictionary.

Processing a whole file (data processing): Write a function for processing an

entire data file and adding its data to a dictionary.

Processing many files and enabling search (data processing): Write one

function for processing multiple data files and one function for interacting with our
data (searching for data around a specific name).

code.

ion): Write a function that draws an
initial grid where the name data will be displayed.

Plot the baby name data (data visualization): Write a function for plotting the

data for an inputted name.

The work in this assignment is divided across two files: babynames.py for data
processing and babygraphics . py for data visualization. Inbabynames . py, you will
write the code to build and populate the name_data dictionary for storing our data. In
babygraphics.py, you will write code to use the tkinter graphics library to build
a powerful visualization of the data contained in name_data. We’ve divided the
assignment this way so that you can get started on the data processing milestones
(babynames . py) before worrying about graphics.

AN IMPORTANT NOTE ON TESTING:

The starter code provides empty function definitions for all of the specified milestones.
For each problem, we give you specific guidelines on how to begin decomposing your
solution. While you can add additional functions for decomposition, you should not
change any of the function names or parameter requirements that we already
provide to you in the starter code. Since we include doctests or other forms of testing
for these pre-decomposed functions, editing the function headers can cause existing tests
to fail. Additionally, we will be expecting the exact function definitions we have
provided when we grade your code. Making any changes to these definitions will make
it very difficult for us to grade your submission. Of course, we encourage you to write
additional doctests for the functions in this assignment.

IMPLEMENTATION TIP:

We highly recommend reading over all of the parts of this assignment first to get a
sense of what you’re being asked to do before you start coding. It’s much harder to
write the program if you just implement each separate milestone without understanding
how it fits into the larger picture (e.g. It’s difficult to understand why milestone 1 is
asking you to add a name to a dictionary without understanding what the dictionary will
be used for or where the data will come from).

Overview

Every year, the Social Security Administration releases data about the 1000 most popular
names for babies born in the U.S. at http: //www.ssa.gov/OACT/babynames/ .
If you go and explore the website, you can see that the data for a single year is presented
in tabular form that looks something like the data in Figure 2 (we chose the year 2000
because that is close to the year that many of the people currently in the class were born!):

Name popularity in 2000

Rank Male name Female name
1 Jacob Emily
2 Michael Hannah
3 Matthew Madison
4 Joshua Ashley
5 Christopher Sarah

Figure 2: Social Security Administration baby data from the year 2000 in tabular form

In this data set, rank 1 means the most popular name, rank 2 means next most popular, and
so on down through rank 1000. While we hope the application of visualizing real-world
data will be exciting for you, we want to acknowledge two limitations of the government
dataset we’re using:

e The data is divided into "male” and "female" columns to reflect the practice of
assigning a biological sex to babies at birth. Unfortunately, babies who are intersex
at birth are not included in the dataset due to the way in which the data has been
historically collected.

e Since this data is drawn from the names of babies born in the United States, it does
not capture the names of many people living in the United States who have
immigrated here.

A good potential extension to this assignment might include finding and displaying datasets
that have data about a wider range of people!

http://www.ssa.gov/OACT/babynames/

—6—

Like many datasets that you will encounter in real life, this data can be boiled down to a
single text file that looks something like Figure 3 (data shown for 1980 and 2000). The
files are included in the data folder of the project’s starter code so you can also take a
look at them yourself!

You should note the following about the structure of each file:

e Each file begins with a single line that contains the year for which the data was
collected, followed by many lines containing the actual name rankings for that year.

e Each line of the file (except the first one) contains an integer rank, a male name,
and a female name, all of which are separated by commas.

e Each line may also contain arbitrary whitespace around the names and ranks.

baby-1980. txt baby-2000. txt

1980 2000

1,Michael, Jennifer
2 ,Christopher,Amanda
3, Jason,Jessica

4 David,Melissa
5,James, Sarah

780 ,Jessica,Juliana
781, Mikel, Charissa
782,0svaldo,Fatima
783 ,Edwardo, Shara
784, Raymundo, Corrie

1,Jacob, Emily

2, Michael, Hannah
3, Matthew,Madison
4, Joshua, Ashley
5,Christopher,Sarah

240, Marcos,Gianna
241,Cooper, Juliana
242, Elias,Fatima
243 ,Brenden,Allyson
244 ,Israel, Gracie

Figure 3: File format for Social Security Administration baby name data

A rank of 1 indicates the most popular name that year, while a rank of 997 indicates a name
that is not very popular. As you can see from the two small file excerpts in Figure 4, the
popularity of names evolves over time. The most popular women’s name in 1980 (Jennifer)
doesn’t even appear in the top five names in 2000, only 20 years later. Fatima barely
appears in the 1980s (at rank #782) but by 2000 is up to #242.

If a name does not appear in a file, then it was not in the top 1000 rankings for that year.
The lines in the file happen to be in order of decreasing popularity (rank), but nothing in
the assignment depends on that fact.

However, data in the real world is very frequently not in the form you need it to be.
Reasonably, for the Social Security Administration, their data is organized by year. Each
year they get all those forms filled out by parents, crunch the data together, and eventually
publish the data for that year, such as we have in baby-2000. txt. There’s a problem
though; the interesting analysis and visualization of the data described above requires
organizing it by name, across many years. This is a highly realistic data problem, and it
will be the main challenge for this project.

_7-

The goal of this assignment is to create a program that graphs this name data over time, as
shown in the sample run in Figure 1. In this diagram, the user has typed the string
"Heather Ethel Brittany" into the box marked “Names” (at the top of the
program window) and then hit <Enter/Return> on their keyboard, to indicate that they
want to see the name data for the three names “Heather,” “Ethel,” and “Brittany.”
Whenever the user enters names to plot, the program creates a plot line for each name that
shows the name’s popularity over the decades. This visualization functionality allows us
to understand the data much more effectively!

Effectively structuring data

In order to help you with the challenge of structuring and organizing the name data that is
stored across many different files, we will define a nested data format that we’ll stick to in
the rest of this assignment. The data structure for this program (which we will refer to as
name_data) is a dictionary that has a key for every name (a string) that we come
across in the dataset. The value associated with each name is another dictionary (i.e. a
nested dictionary), which maps a year (an int) to a rank (an int). A partial example of
this data structure would look something like this:

{
'Aaden': {2010: 560},
'Aaliyah': {2000: 211, 2010: 56},

}

Each name has data for one or more years. In the above data, “Aaliyah” jumped from rank
211 in 2000 to 56 in 2010. The reason that “Aaden” and “Aaliyah” show up first in the
dataset is that they are alphabetically the first names that show up in our entire dataset of
names.

(Note that although dictionaries don’t guarantee that keys are in sorted order, you won’t
need to worry about this. We handle all of the printing of name_data for you so you
are not required to sort the keys in the outer dictionary alphabetically or in the inner
dictionary chronologically. But if you’re interested in seeing how it works, feel free to
check out the provided print_names () function that we call for you for testing!)

The subsequent milestones and functions will allow us to build, populate, and display our
nested dictionary data structure, which we will refer to as name_data throughout the
handout. They are broken down into two main parts: data processing in babynames . py
(milestones 1-3) and data visualization babygraphics . py (milestones 4-6).

Milestone 1: Add a single name (add_data for name() inbabynames.py)

The add_data_for name () function takes in the name_data dictionary, a single
name, a year, and the rank associated with that name for the given year. The function then
stores this information in the name_data dict. Eventually, we will call this function many
times to build up the whole data set, but for now we will focus on just being able to add a
single entry to our dictionary, as demonstrated in Figure 4. This function is short but dense.

{
{ -

: 'Kylie': {2010: 57},
'Rylie': {2010: 57}, Nick': {;010: 37}}
}N1Ck : {2010: 37}, 'Kate': {2010: 208}

}

add data_ for name (name_data, 2010, 208, ‘Kate’)

v

Figure 4: The dictionary on the left represents the name data dict passed into the
add_data_ for name() function. The dictionary on the right represents the
name_data dictionary after the function has added a single name, year, and rank entry
specified by the other parameters.

The name _data dictionary is passed in as a parameter to our add_data for name ()
function. Note that since dictionaries in Python are mutable, “when we modify the
name_data dictionary inside our function, those changes will persist even after the
function finishes. Therefore, we do not need to return the name_data dictionary at the
end of add data for name ().

Testing milestone 1

The starter code includes two doctests to help you test your code. The tests pass in an empty
dictionary to represent an empty name_data structure. You may want to consider writing
additional doctests for add_data for name () to help you make sure this function is
working correctly before moving on.

Take a look at how the existing doctests are formatted. As we mentioned in class, writing
doctests is just like running each line of code in the Python Console. Therefore, you will
first need to create a dictionary on one doctest line before passing it into your function. As
you can see in the existing doctests for this function, we start with an empty dictionary,
then call the add_data_for name () function (with appropriate parameters) to add
entries to the name_data dictionary. Then, we put name_data on the final doctest line,
followed by the expected contents in order to evaluate your function.

We have modeled this 3-step process for you in the doctests that we have provided to
encourage you to create additional doctests. You do not necessarily need to create a new
dictionary for every doctest you might add. If you do add additional doctests, make sure
to match the spacing and formatting for dictionaries (as in the examples we have provided),
including a single space after each colon and each comma. The keys should be written in
the order they were inserted into the dict.

The ""Sammy"* Issue

In rare cases, a name like 'Sammy ' appears twice in a given year: once as a male name
and once as a female name. We need a policy for how to handle that case. Our policy will
be to store whichever rank number is smaller. That is, if ' Sammy ' shows up as both rank
100 (from the male data) and rank 200 (from the female data) in 1990, you should only
store 'Sammy ' as having rank 100 in the year 1990. This example is illustrated in Figure
5 below.

{
'Sammy': {1990: 100}

}

—_

add data for name (name data,

{
'Sammy': {1990: 200}

}

—_—

{
'Sammy': {1990: 100},

}

1990, 200, ‘Sammy’)

{
'Sammy': {1990: 100},

}

add data for name (name_data, 1990, 100,

‘Sammy’)

Figure 5: Two examples of how to handle the Sammy issue: The top example shows that
if the dictionary already has a lower rank (100) for a name in a given year, then the attempt
to add in a higher rank (200) would not do anything. The bottom example shows that if the
dictionary is currently storing a higher rank (200) for a name in a given year, adding in a
lower rank (100) would replace the old rank.

We would strongly encourage you to add a doctest for add _data for name () to test
that you correctly handle the “Sammy issue.” In baby-2000.txt the name
'"Christian' exhibits this phenomenon, and there are other such names in the dataset.

Milestone 2: Processing a whole file of data (add_file () in babynames.py)
Now that we can add a single entry to our data structure, we will focus on being able to
process a whole file’s worth of baby name data. Fill in the add_£ile () function, which
takes in a reference to a name_data dictionary and a filename. You should add the
contents of the file, one line at a time, leveraging the add_data_for name () function
we wrote in the previous milestone.

The format of a text file containing baby name data is shown in Figure 3 and is described
again for your convenience here. The year is on the first line. The following lines each have
the rank, male name, and female name separated from each other by commas. There may
be some extra whitespace chars separating the data we actually care about, as seen in many
of the lines in Figure 3. You should process all the lines in the file. Do not make any
assumptions about the number of lines of data contained in the file. Again, since we are
able to modify the name_data dict directly, this function does not return any values.

Tests are provided for this function, using the relatively small test files small-
2000. txt and small-2010. txt to build a rudimentary name_data dictionary.

~ 10—

Milestone 3: Processing many files and searching for names in the dataset
(read files() and search names () in babynames.py)

Now that we have the capability to store all of the information from a single file, we can
apply our powers to read in decades worth of baby name information! Fill in the function
read files (), which takes in a list of filenames and builds up one big name_data
dictionary that contains all of the baby name data from all the files, which is then returned.
There are no doctests for this function, but we will discuss how to test its output below.

Now that we have a data structure that stores lots of baby name data, organized by name,
it might be good to be able to search through all the names in our dataset and return all
those that we might potentially be interested in. You should write the search_names ()
function, which is given a name_data dictionary and a target string, and returns a list of
all names from our dataset that contain the target string. This search should be case-
insensitive, which means that the target strings 'aa' and 'AA' both match the name
'Aaliyah’'.

Testing Milestones 1-3
You’ve made it halfway! It’s now time to test all the functions you’ve written above with
some real data and then move on to crafting a display for the data.

We have provided amain () function in babynames . py for you to be able to test that
all of the functions we’ve written so far are working properly. Perhaps more importantly,
you’ll be able to flex your new data organization skills on the masses of data provided by
the Social Security Administration. The given main () function we have provided can be
run in two different ways.

The first way that your program can be run is by providing one or more baby data file
arguments, all of which will be passed into the read files () function you have
written. This data is then printed to the console by the print_names () function we have
provided, which prints the names in alphabetical order, along with their ranking data. A
sample output can be seen below, when running the babynames.py program on the
small-2000.txt and small-2010.txt files. These files are just for testing
purposes and don’t actually contain any real names. (Note: if you're using a Mac, you
would use "python3" rather than "py" in the examples below.)

HOQWPV

py babynames.py data/small/small-2000.txt data/small/small-2010. txt
[(2000, 1), (2010, 2)]
[(2000, 1)]
[(2000, 2), (2010, 1)]
[(2010, 1)]
[(2010, 2)]

- 11—

The small files test that the code is working correctly, but they’re just an appetizer to the
main course, which is running your code on the real baby name files! You can take a look
at 4 decades of data with the following command in the terminal (pro tip: you can use the
Tab key to complete file names without all the typing).

> py babynames.py data/full/baby-1980.txt data/full/baby-1990.txt
data/full/baby-2000.txt data/full/baby-2010.txt

...lots of output...

Organizing all the data and dumping it out is impressive, but it’s not the only thing we can
do! The main () function that we have provided can also call the search names ()
function we have written to help us filter the large amounts of data we are now able to read
and store. If the first 2 command line arguments are "-search target", then
main () reads in all the data, calls your search_names () function to find names that
have matches with the target string, and prints those names. Since the main () function
directly prints the output of the search _names () function, note that the names are not
printed in alphabetical order, but rather in the order in which they were added to the
dictionary. Here is an example with the search target "aa":

> py babynames.py -search aa data/full/baby-2000.txt data/full/baby-2010. txt
Aaron
Isaac
Aaliyah
Isaak
Aaden
Aarav
Ayaan
Sanaa
Ishaan
Aarush

You've now solved the key challenge of reading and organizing a realistic mass of data!
Now we can move on to building a cool visualization for this data!

Milestone 4: Run the provided graphics code (babygraphics.py)

We have provided some starter code in the babygraphics . py file to set up a drawing
canvas (using tkinter), and then add the interactive capability to enter names to graph and
target strings to search the names in the database. The code we have provided is located
across two files: the tkinter code to draw the main graphical window and set up the
interactive capability is located in babygraphicsgui.py and the code that actually
makes everything run is located in the main () function in babygraphics.py. The
provided main () function takes care of calling your babynames.read files()
function to read in the baby name data and populate the name_data dictionary. The
challenge of this part of the assignment is figuring out how to write functions to graph the
contents of the name_data dictionary. For this milestone, you should run the program
from the command line in the usual way (shown below).

‘> py babygraphics.py ‘

~12 —

This should bring up a window as seen in Figure 6.

Baby Names

Figure 6: Blank Baby Name graphical window

Although this program might appear boring, it has actually loaded all of the baby name
data information behind the scenes. To test this (and to test out the search _name ())
function you wrote in Milestone 3, try typing a search string into the text field at the bottom
of the window and then hit <Enter>. You should see a text field pop up in the bottom of
the screen showing all names in the data set that match the search string, as seen in Figure
7.

Isaac Aarcn Jomaal Rashaad Aaliyah Isaak Aaden Aarav Ayaan Sanaa Ishaa
n Aarush

Figure 7: Bottom portion of the Baby Names window after entering the search string ‘aa’

Search: aa\

Once you have tested that you can run the graphical window and search for names, you
have completed Milestone 4.

Milestone 5: Draw the background grid (draw_fixed lines() in
babygraphics.py)

Constants you will use for Milestones 5 and 6
Here are the constants that you will need to use for Milestones 5 and 6:

YEARS = [1900,1910,1920,1930,1940,1950,1960,1970,1980,1990,2000,2010]
GRAPH_MARGIN SIZE = 20

COILORS = ['red', 'purple', 'green', 'blue']

TEXT DX = 2

LINE WIDTH = 2

MAX RANK = 1000

~ 13—

In this milestone, our goal is to draw the horizontal lines at the top and bottom of the canvas,
the decade lines, and the labels that make up the background of the graph. To do so, you
will implement the draw_fixed lines () function. We have provided three lines of
code in this function that clear the existing canvas and get the canvas width and height.
Once this function is done, your graphical window should look like Figure 8 (minus the
red highlighting).

eoCe Baby Names

Names: |

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Search:

Figure 8: View of the Baby Names window after draw_fixed () has been called, with
the canvas area highlighted in red.

Note: In the GUI (Graphical User Interface), the text field labeled "Names:" takes up the
top of the window, and the canvas is a big rectangle below it. The "Search:" text field is at
the bottom of the window below the canvas. When we refer to the canvas, we are talking
about the red highlighted area in Figure 8.

To complete this milestone, you should follow the following steps.

e There should be a GRAPH_MARGIN_ SIZE sized margin area on the top, bottom,

left, and right of the canvas (so that the year labels are always visible) as indicated
in Figure 9. Draw a horizontal line at the top and the bottom of the canvas to create
this margin area at the top and bottom.

e For each decade in YEARS, draw a vertical line from the top of the canvas to the
bottom. The lines should start GRAPH_MARGIN SIZE pixels in from the left edge
of the window and be evenly-spaced to fill the entire width of the graph.

— 14—

o The trickiest math here is computing the x value for each year. For this
reason, we ask you to decompose a short helper function called
get x coordinate () , which takes in the width of the canvas and
the index of the year you are drawing (where 1900 has index 0, 1910 has
index 1, and so on) and returns the appropriate x coordinate. You’ll need
to account for the GRAPH_MARGIN_SIZE when writing this function, so
the first line will be placed at the x-coordinate GRAPH_MARGIN SIZE
instead of 0. Both draw_fixed () and draw_names () (written in
Milestone 6) need to have the exact same x coordinate for each year,
which makes this a valuable function to decompose. We have provided
several doctests for the get_x coordinate () function.

e For each decade in YEARS, add a decade label that displays that year as a string in
the bottom margin area. The labels should be positioned such that their x
coordinates are offset by TEXT DX pixels from their corresponding decade line,
and their y coordinates should be GRAPH_MARGIN_SIZE from the bottom of
the canvas.

o The tkinter create_text () function takes in an optional anchor
parameter that indicates which corner of the text should be placed at the
specified x,y coordinate. When calling the create_text () function
for these labels, you should specify anchor=tkinter .NW as the last
parameter to indicate thatthe x,y pointis at the north-west corner relative
to the text.

For your convenience, Figure 9 is a diagram of the line spacing for the output of the
draw_fixed lines () function. While this diagram has four vertical lines in it, your
canvas should have twelve vertical lines. The outer edge of the canvas is shown as a
rectangle, with the various lines drawn within it. Each double-arrow marks a distance of
GRAPH_MARGIN_SIZE pixels.

Figure 9: Line spacing diagram for Baby Names canvas

Note: The tkinter create_line () function truncates coordinates from £loat to int
internally, so you can do your computations using floats.

By default, main () creates a window with a 1000 x 600 canvas in it. Try changing the
constant values CANVAS_WIDTH and CANVAS_HEIGHT that are defined at the top of the
program to change the size of the canvas that is drawn. Your line-drawing math should still
look right for different width/height values. Note that if you specify a height and width for

_15—

the canvas, the actual window itself will be larger than that because it needs space to display
the text entry fields and the text field that shows the results of the targeted name search.
You should also be able to temporarily change the GRAPH_MARGIN SIZE constant to a
value like 100, and your drawing should be able to use the new value. This shows the utility
of defining constants— they allow you to define values that can be easily changed and all
the lines that rely on this value remain consistent with one another.

Once your code can draw the fixed lines and year labels, for various heights and widths,
you can move on to the next milestone.

Milestone 6: Plot the baby name data (draw_names () in babygraphics.py)

We have reached the final part of the assignment! Now it is time to plot the actual name
data that we have worked so hard to organize. To do so, you will fill in the
draw_names () function. We have provided three lines of code, which use your
draw_fixed lines () function to fill in the background and then fetch the width and
height of the canvas. The parameter lookup names contains a list of names like
['Heather', 'Ethel', 'Brittany'] and the parameter name_data contains
the dictionary that you built up in Milestones 1-3. The draw_names () function is called
every time that the user (you) enters some space-separated names into the top text entry
field (labeled "Names:") and hits <Enter>. The list Lookup_names will contain the
names that you enter into the Names text entry field, formatted with the correct casing
(uppercase first letter, lowercase other letters), which we handle for you. If you enter one
or more names that are not contained in name_data into the top text entry field, a
message will display on the top right, and those names will be omitted from
lookup_ names. For example, if you try to graph the popularity of the name "Mehran",
you will see the message: "Mehran is not contained in the name database.” Evidently, there
are not a lot of Mehrans out there, as it was not in the top 1000 baby names in the U.S. in
any decade of the past century. We can't fathom why. Anyway...

When plotting the name data, you should consider the following tips:

e The x-coordinate of each line segment starts at the vertical grid line for a particular
decade and ends at the vertical grid line for the following decade. That has some
similarities to a problem you solved in Part 1 of this assignment (where you
computed the daily number of disease infections by using information about the
prior day and the current day to do the computation).

e The y coordinate value for a name’s rank in a given year is defined as follows. If
the name does not have a rank stored in name_data for a given year, you should
assign it MAX RANK for that year. If the rank is 1 (the best possible rank), the y
coordinate should be equal to the y coordinate of the top horizontal line in the
canvas. If the rank is MAX RANK, the y coordinate should be equal to the y
coordinate of the bottom horizontal line. All other ranks should be evenly spaced
between the top and the bottom of the graph area.

— 16—

e To make the data easier to read, the lines on the graph are shown in different colors.
The colors that lines should be plotted in are defined in the constant COLORS
(which is a list) The first data entry is plotted in red, the second in purple, the third
in green, and the fourth in blue. After that, the colors cycle around again through
the same sequence. Hint: consider using the remainder (%) operator to help with
cycling through colors. The color of a line segment can be specified with the
optional £111=color parameter to create_line()

e For each year, you should additionally draw a rank label next to the endpoint of the
line that displays that entry’s name and rank for that year. If there is no rank or if
the rank is 1000, you should display and asterisk (' * ') instead of the rank (see
Figure 10 for an example). The label’s color should match the line’s color. The x-
coordinate of the ranking label is the x-coordinate of that decade’s vertical line plus
TEXT_DX pixels, and the y-coordinate is the same as the y-coordinate of that
corresponding year’s plot line segment. The call to create_text () in this part
of the assignment should use anchor=tkinter.SW as the last optional
parameter.

e When drawing line segments, you want them to appear thicker than the lines that
define the boundary. To accomplish this, include the optional
width=LINE WIDTH parameter inany callsto create line ()

If you are having trouble getting the right coordinates for your lines or labels in your graph,
try printing the x/y coordinates to check them. When writing programs involving
graphics, you can still print to the Python console. This is a useful way to debug parts of
your program, as you can just print out particular values and see if they match what you
were expecting them to be.

Once you think you have your code working, you should test by entering some names
(separated by spaces) in the top text entry bar of the Baby Names window. ' Jennifer'
is a good test, since that name hits both the very bottom and the very top (a rags-to-riches
story of baby names!). A graph with the two names ' Jennifer' and 'Lucy' isshown
in Figure 10 (on the next page).

—17 —

) Baby Names Solution

MNames: |Jennifer Lucy

Jennifer 1

Jennifer 1

lennifer &

Lucy 61

Jennifer *

Lucy 75

Jennifer *

Lucy 94

Jennifer *

Lucy 115

ennifer *

ennifer 630

) er 61

Lucy 267

Lucy 438

Jennifer 26

ucy 323

Lucy 75

Jennifer 121

1900

Search:

1910

1920

1930

1840

1950

1960

1970

1980

1990

2000

2010

Figure 10: A fully-implemented Baby Name program displaying historical name data for the names
‘Jennifer’ and ‘Lucy’

Congratulations! You’ve wrangled a tough real-world dataset and built a cool
visualization!

Optional Extra/Extension Features
There are many possibilities for optional extra features that you can add if you like,
potentially for extra credit. If you are going to do this, please submit two versions of your
program: one that meets all the assignment requirements, and a second extended version.
As usual, in the Assignment 6 project folder, we have provided a file called
extension.py that you can use if you want to write any extensions that you might want
to make based on this assignment. The file doesn't contain any useful code to begin with.
So, you only need to submit the extension.py file if you've written some sort of
extension in that file that you'd like us to see. You can potentially have more than one
extension file if you are, say, extending both babynames and babygraphics.

At the top of the files for an extended version (if you submit one), in your comment header,
you should comment what extra features you completed.

~18—
Here are a few extension ideas:

« Try to minimize the overprinting problem. If the popularity of a name is improving
slowly, the graph for that name will cross the label for that point, making it harder to
read. You could reduce this problem by positioning the label more intelligently. If a
name were increasing in popularity, you could display the label below the point;
conversely, for names that are falling in popularity, you could place the label above the
point. An even more challenging task is to try to reduce the problem of having labels
for different names collide.

+ Plot the data differently. Right now, your program visualizes the data by showing its
popularity over time. What other information about the names could you display?
Consider plotting the rate of change over time, the correlation of various names, or other
interesting trends that aren’t apparent purely through their popularity.

 Visualize another dataset. Can you use your program to visualize a dataset of names
from a different data source? What other data sets are you able to plot? The world is
your oyster! We’ve posted a separate Guided Extension handout on the assignment page
with suggestions for a few datasets for you to use.

Submitting your work
Once you've gotten all the parts of this assignment working, you're ready to submit!

Make sure to submit only the python files you modified for this assignment on Paperless.
You should make sure to submit the files:

data_ analysis.py
babynames.py
babygraphics.py

	Part 1: Dictionaries
	Part 2: Baby Names
	Overview
	Milestone 1: Add a single name (add_data_for_name() in babynames.py)
	Milestone 2: Processing a whole file of data (add_file() in babynames.py)
	Milestone 3: Processing many files and searching for names in the dataset (read_files() and search_names() in babynames.py)
	Testing Milestones 1-3
	Milestone 4: Run the provided graphics code (babygraphics.py)
	Milestone 5: Draw the background grid (draw_fixed_lines() in babygraphics.py)
	Milestone 6: Plot the baby name data (draw_names() in babygraphics.py)
	Optional Extra/Extension Features

