
Chris Gregg and Wil Kautz
CS 106A

 Handout #15

August 4, 2020

Assignment #7: Bajillion Search Engine
Due: 10:30am (Pacific Daylight Time) on Tuesday, August 11th

This assignment will give you an opportunity to use many of your Python skills to build an

application that you probably now use on a daily basis – a search engine! You can

download the starter code for this project under the “Assignments” tab on the CS106A

website. The starter project will provide Python files for you to write your programs in.

As usual, the assignment is broken up into two parts. The first part of the assignment is a

short problem to give you practice writing a function involving lists that you then might

leverage in the second part of the assignment. In the second part of the assignment you'll

be building a search engine from the ground up. It will give you a chance to see how

concepts from CS106A are directly applicable to build some of the powerful applications

we now use on a daily basis. And, we'll give you a little relevant history there as well.

Sandcastle: Finding common elements in two lists

This problem will give you practice with yet another aspect of using lists. Besides

providing a little programming warm-up before you dive right into the main part of the

assignment, the function you write here may actually be something that you use in some

form in the second part of this assignment as well. You should write your code for this

problem in the file common_elements.py.

There are many situations in which we may be interested in identifying the common

elements of two lists. For example, say we have a list of all the students who have

completed all their Ways course requirements at Stanford and another list of all the students

who have completed the requirements for their major(s) at Stanford. By taking the

elements (students) who appear in both lists, we could produce a list of students who have

met all their course requirements at Stanford. If were then to take that resulting list (of

students who have met all their course requirements) and a list of all undergrads at Stanford

who completed at least 180 units and took the common elements from those two lists, we

could produce a new list of all the students who were eligible to graduate. Thus, producing

a list of the common elements from two other lists not only has practical applications, but

can be applied repeatedly to produce even more specific results.

You task is to write the following function:

def common(list1, list2)

The function takes in two lists and should return a new list which contains only those

elements which appear in both list1 and list2. The original two lists passed into the

function should not be changed.

– 2 –

For example, if your function were called as follows:

common(['a', 'b', 'c'], ['c', 'a', 'z'])

it should return the list:

['a', 'c']

If your function is called with two lists that have no overlapping elements, such as:

common(['a', 'b', 'c'], ['x', 'y', 'z'])

it should return the empty list:

[]

Also, if your function is called with two lists that have multiple of the same shared

element, such as:

common(['a', 'a', 'b'], ['x', 'a', 'a'])

it should return a result that includes only one of the elements that appeared multiple times,

as shown in the result below:

['a']

Doctests are provided for you to test your function. Feel free to write additional doctests.

Also, feel free to write any additional functions that may help you solve this problem. A

main function is also provided, which calls your function with some sample test cases and

prints the results.

The Bajillion Search Engine

In 1998, two Stanford CS graduate students, Larry Page and Sergey Brin, founded Google

Inc. to provide a new way of doing search on the Internet based on research they had

conducted as part of the Stanford Digital Libraries project. If you're interested, you can

find their original paper describing the initial version of the Google search engine here:

http://infolab.stanford.edu/~backrub/google.html

As their paper explains, the original URL (Uniform Resource Locator, or web address) for

Google was in fact hosted at Stanford: http://google.stanford.edu/. Ironically enough, that

URL now redirects to a web site describing the G Suite software tools that Stanford licenses

from Google, Inc.

What you might not know is that sigificant portions of the original version of the Google

were written in Python. You can find more details about that in the paper referenced above.

In fact, it turns out that writing a simple search engine in Python is entirely doable given

the knowledge that you now have in CS106A! To prove that point, in this assignment

you'll will be implementing your own text-based search engine. It's like Google, only

smaller. Much, much, smaller.

http://infolab.stanford.edu/~backrub/google.html
http://google.stanford.edu/

– 3 –

The name Google comes from the term "googol", which refers to the number formed by a

1 followed by 100 zeroes (or, equivalently, 10 to the 100th power). The name of the

company Google actually comes from an unintentional misspelling of the term googol, as

Larry Page wanted the name to refer to a really large number. Since the name "google" is

already taken, we figured you could name your search engine after another notion of a

really large number, which is why your search engine is called "Bajillion." As in, "there

are a bajillion things I've learning in CS106A this quarter!"

There are two main parts of the search engine that you'll be implementing. The first, which

is the heart of the search engine, is called the "index," which is described in Part A below

and the second is the actual search functionality, which is described in Part B.

Part A: The Index

Most search engines are built on top of what is called an "inverted index," or just "index"

for short. An index for a search engine is similar to the index of words in the back of book.

Basically, it tells you the page (or, in the more general case, the document or file) where

each word appears.

In search, we use the notion of a "term" to refer to generalized notion of a word, name,

number, etc. that we might want to look up in a collection of documents. If it’s easier, you

can just think of a "term" as a "word", but really it could refer to something like the number

"127" which is not officially a "word".

In any case, an index is structure where, for each term, we have a list of the documents that

this term appears in. Consider the following expository examples of terms and documents

they appear in:

• The term "burrito" appears in the text documents named "recipes.txt", "greatest

eats.txt", "top 10 foods.txt", and "favorites.txt"

• The term "sushi" appears in the text documents "favorites.txt" and "Japanese

foods.txt"

• The term "samosa" appears in the text document "appetizers.txt"

We could represent an index of these terms as something like:

"burrito" → "recipes.txt", "greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

"sushi" → "favorites.txt" and "Japanese foods.txt"

"samosa" → "appetizers.txt"

If we wanted to represent such a mapping from terms to a list of documents (file names) in

Python, a dictionary would be a natural structure to use. Thus, the index could be

represented as the following Python dictionary:

index = {

 'burrito': ['recipes.txt', 'greatest eats.txt',

 'top 10 foods.txt', 'favorites.txt'],

 'sushi': ['favorites.txt', 'Japanese foods.txt'],

 'samosa': ['appetizers.txt']

 }

– 4 –

Note that in the dictionary above, the terms (strings) are the keys, and the values are lists

of the names of files containing those terms (the file names are strings).

Building an index

Your task in this part of the assignment is to write the code the builds an index for a set of

text files. More specifically, you will be implementing a function:

create_index(filenames, index, file_titles)

This function is passed the following information:

• filenames: this is a list of file names (strings) that you'll use in building an index.

• index: this is a dictionary representing the index that you will need to build up.

When your function is called, it will be passed an empty dictionary ({}) for index.

Since dictionaries are mutable types, any changes your function makes to the

parameter index will persist after your function completes.

• file_titles: this is a dictionary where the keys are file names (strings) and the

values are the titles of the articles in each file (which are also strings). We'll explain

the details of this parameter later in this handout. When your function is called, it

will be passed an empty dictionary ({}) for file_titles and your function will

add entries to this dictionary as appropriate.

You will build the index based on the set of files specified in the parameter filenames.

For each file in the filenames list, you should parse out all the terms in the file in order

to add appropriate entries to the index that you are building.

Terms are defined as follows:

• Terms are seperated from each other in text by spaces or newline (return) characters.

• Terms should have all their letters converted to lowercase.

• Terms should have all punctuation symbols stripped off from their beginning and

end. (Punctuation characters in the middle of a term are fine and should not be

removed).

To help implement the third bullet point above, the Python string library (which is

already imported in the starter code we give you with the line import string) provides

a constant called string.punctuation, which is a string containing all the punctuation

marks in Python. You can use this constant in conjunction with the strip function on

strings to remove punctuation marks from just the beginning and ending of a string, as

shown in the example from the Python console below:

>>> raw = '$$j.lo!'

>>> term = raw.strip(string.punctuation)

>>> term

'j.lo'

Recall that the strip function only removes characters from the beginning and ending of

a string. strip will not remove punctuation marks in the middle of a string. Thus, in the

example above, the period in the middle of 'j.lo' remains after the call to strip.

– 5 –

As an additional point about terms, any string of characters that only contains punctuation

marks is not considered a term and should not be added to the index. In such a case, if we

stripped all the punctuation from the string, we would be left with the empty string (""),

and empty strings should not be included in the index.

To make this all more concrete, say that we want to index the text file 'doc1.txt' shown

below:

In parsing this file, we should produce the following terms:

• The string '*We*' should be converted to term 'we'

• The string 'are' should be converted to term 'are'

• The string '100,000' should be converted to term '100,000'

(Note that the comma inside 100,000 is fine and should not be removed.)

• The string 'STRONG!' should be converted to term 'strong'

• The string '$$' should be ignored (i.e., not included in the index), as a string of

only punctuation is not considered a term.

As you produce terms from a file, you should add appropriate entries into the index for

each of the terms. For example, if we started with an index that was the empty dictionary,

the index should look as follows after processing the file 'doc1.txt':

Say, we now process another file, 'doc2.txt', shown below:

We should appropriately update the index we had before with the terms found in

'doc2.txt', we should result in the index shown below.

We are 100,000

STRONG! $$

'doc1.txt':

{

 'we': ['doc1.txt'],

 'are': ['doc1.txt'],

 '100,000': ['doc1.txt'],

 'strong': ['doc1.txt']

}

index:

Strong, you are!

--Yoda--

'doc2.txt':

– 6 –

Note that in cases where a term found in 'doc2.txt' previously existed in the index

(such as 'are' and 'strong'), the list of documents that contain that term was expanded

to include the file 'doc2.txt'. In cases where a term found in 'doc2.txt' was not

previously in the index (such as 'you' and 'yoda'), a new entry is added to the index

to indicate that the given term appeared in 'doc2.txt'.

Building the dictionary file_titles

In real-world search engines, we often want to store additional information about each file

while we are processing it in order to use this information later when we want to display

search results. For example, for web pages, we might store the title of the page. For news

articles, we might store the headline of the article. In the news article data we provide in

this assignment, the first line of each file is a title for the article in that file, which we want

to store for future reference. Here is an example of the first portion of two of the actual

files (named '001.txt' and '002.txt', respectively) in the BBC News article data

that we provide for you in the assignment:

When we are process each file to build up the index, we also want to add an entry to the

dictionary file_titles to keep track of the title for each file. Recall, that the title is

simply the first line of the file (with the "newline" character at the end of the line removed).

We store this information in file_titles, where the file name (string) is the key and the

title (string) is the value for an entry in the dictionary.

So, if we started with file_titles as an empty dictionary (which is the case when your

create_index function is called), after we process the files '001.txt' and

'002.txt', the file_titles dictionary should look as follows:

{

 'we': ['doc1.txt'],

 'are': ['doc1.txt', 'doc2.txt'],

 '100,000': ['doc1.txt'],

 'strong': ['doc1.txt', 'doc2.txt'],

 'you': ['doc2.txt'],

 'yoda': ['doc2.txt']

}

index:

Broadband steams ahead in the US

More and more Americans are

joining the internet's fast lane,

according to official figures.

...

'001.txt':

EA to take on film and TV giants

Video game giant Electronic Arts

(EA) says it wants to become the

biggest entertainment firm in the

world.

...

'002.txt':

– 7 –

Important note: the terms in the title line for each file should still be included in the

index (along with the rest of the document). A common bug is to forget to add the terms

from the title line to the index.

Doctests for the create_index function are provided for you to test your function. Feel

free to write additional doctests. Also, you should definitely write additional functions that

may help you decompose your solution to this problem.

Running your create_index function

You can run your create_index function by running the searchengine.py program

and specifying the directory name for a set of text files that you would like to index. We

provide two such data sets for you to test your code. The first is in a directory named

small, which includes three very short text files, making the size of the resulting index

manageable to inspect manually. You can run your program with the small dataset in a

Python Terminal using this command (on a Mac, use python3 instead of py):

> py searchengine.py small

In the searchengine.py program, we provide a main function that calls your

create_index function and prints the resulting index and file_titles on the

terminal. The output printed by the program on the small dataset, should look as shown

below. (Note that the output below is produced on a PC, where file paths use the backslash

character, represented in Python as a double backslash: \\. On a Mac, you would see

forward a slash character / in the file paths instead of a double backslash).

Index:

{'file1': ['small\\1.txt'], 'title': ['small\\1.txt', 'small\\2.txt',

'small\\3.txt'], 'apple': ['small\\1.txt', 'small\\2.txt', 'small\\3.txt'],

'ball': ['small\\1.txt', 'small\\3.txt'], 'dog': ['small\\1.txt',

'small\\2.txt'], 'elephant': ['small\\1.txt'], 'frog': ['small\\1.txt'],

'file2': ['small\\2.txt'], 'carrot': ['small\\2.txt', 'small\\3.txt'],

'file3': ['small\\3.txt'], 'gerbil': ['small\\3.txt'], 'hamster':

['small\\3.txt'], 'iguana': ['small\\3.txt'], 'lizard': ['small\\3.txt']}

File names -> document titles:

{'small\\1.txt': '** File1 title **', 'small\\2.txt': '** File2 title **',

'small\\3.txt': '** File3 title **'}

{

 '001.txt': 'Broadband steams ahead in the US',

 '002.txt': 'EA to take on film and TV giants'

}

file_titles:

– 8 –

When you think you've gotten your program working well on the small dataset, you can

then try it out on the BBC News article dataset1 with the following command (on the Mac,

use python3 instead of py):

> py searchengine.py bbcnews

The output produced in that case is too large to verify manually, but running on such a

large dataset is a good way to see if you program crashes on any cases that might have been

missed with the small dataset.

Part B: Using the index to search

Once you feel as though you are indexing documents correctly, you're ready to implement

the actual search functionality. Luckily for you, many people find implementing this part

of the program much easier than building an index. And, as an added bonus, you'll likely

be able to leverage the common function you wrote in the first part of this assignment.

Yeah, sometimes we really do plan for things to work out like that.

Your task in this part of the assignment is to write the code that implements the search

functionality making use of the index you built in Part A. Specifically, you will be

implementing a function:

search(index, query)

This function is passed the following information:

• index: this is the index produced by your create_index function

• query: this is a string representing the user's query. All the letters in this string are

guaranteed to be lowercase (the starter code we provide uses the lower function to

create a lowercase query string that is passed to this function). To simplify things,

you can assume that the user will never enter punctuation characters as part of the

query string. The code we provide does not actually strip out puctuation characters

from the user's query (in case you wanted to do some sort of extension where such

punctuation characters might be meaningful in terms of how the search is

conducted). But, you can just assume for the basic version of the program that the

user will not enter any punctuation characters in their query.

Your search function should return a list of the names of the files that contain all of the

terms in the given query. As we discussed in class, you can determine which files contain

all the query terms using the index. Recall that in the index, the value associated with each

term (key) is a list of the files that contain the given term. This list of files is called the

"posting list" for the term. In order to determine which files contain all of the terms in a

query, you start with the posting list for the first term in the query. You then consecutively

1 The BBC News dataset is a collection of articles covering technology news. We reference the paper which

was responsible for making this dataset available to the research community: D. Greene and P. Cunningham.

"Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering", Proc. ICML

2006. Please note that all rights, including copyright, in the content of the original articles are owned by the

BBC. The articles are used here only for educational purposes.

– 9 –

consider the overlap (i.e., the common elements) of the posting list you have with the

posting list associated with each subsequent term in the query. When you've processed all

the terms in the query in this way, the posting list you have left should contain only those

files that contain every term in the query.

To make things more concrete, if you were to build an index on the small dataset, your

search function should return the respective results shown in the seven examples below.

(Again, note that the examples below are produced on a PC, where file paths use the double

backslash: \\. On a Mac, you would see forward a slash character / in the file paths

instead of a double backslash).

Example 1. Calling: search(index, 'apple')

Should produce the list: ['small\\1.txt', 'small\\2.txt', 'small\\3.txt']

Example 2. Calling: search(index, 'ball')

Should produce the list: ['small\\1.txt', 'small\\3.txt']

Example 3. Calling: search(index, 'lizard')

Should produce the list: ['small\\3.txt']

Example 4. Calling: search(index, 'apple ball')

Should produce the list: ['small\\1.txt', 'small\\3.txt']

Example 5. Calling: search(index, 'dog ball')

Should produce the list: ['small\\1.txt']

Example 6. Calling: search(index, 'dog ball hamster')

Should produce the list: []

Example 7. Calling: search(index, 'nope')

Should produce the list: []

Doctests for the search function are provided for you. Feel free to write additional

doctests. Also, you should definitely write additional functions that may help you

decompose your solution to this problem.

Running your search function

You can run your search function by running the searchengine.py program,

specifying the directory name for a set of text files that you would like to index, and then

add -s at the end of the command line to indicate "search mode". For example, you can

run your program in "search mode" with the small dataset in a Python Terminal using this

command (on the Mac, use python3 instead of py):

> py searchengine.py small -s

– 10 –

In search mode, the program will first build an index (and a file_title dictionary) on

the files in the directory you specify by calling your create_index function. It will then

repeatedly ask the user (you) for a query, which is sent (along with the index) to your

search function to produce a posting list of results. These results are then displayed on

the terminal, where, for each result, the title of the article and the associated file name are

listed (making use of the file_title dictionary produced by your create_index

function). You can end the program by simply pressing Enter when asked for a query (i.e.,

giving the empy query).

Test your program thoroughly with the small dataset. That dataset is small enough that

you can check your results manually to make sure that you are producing the expected

output for various queries. You can also free free to create your own datasets (directories

containing text files) to test out any particular cases you want to create to debug your code.

When you've think you've gotten your program working with the small dataset, try

running your program with the BBC News data as follows:

> py searchengine.py bbcnews -s

Here is the output of a working program running on some sample queries on the BBC News

data (user input is in bold italics). You can see if your program produces the same output.

(Note that the order of the articles printed might be different depending on how you wrote

your code, but the set of articles that match each query should be the same as in this sample

run.)

Query (empty query to stop): stanford
Results for query 'stanford':

1. Title: Yahoo celebrates a decade online, File: bbcnews\066.txt

2. Title: Google to scan famous libraries, File: bbcnews\217.txt

Query (empty query to stop): bike
Results for query 'bike':

1. Title: Games help you 'learn and play', File: bbcnews\291.txt

2. Title: The Force is strong in Battlefront, File: bbcnews\339.txt

Query (empty query to stop): stanford bike
Results for query 'stanford bike':

No results match that query.

Query (empty query to stop): windows virus security patch
Results for query 'windows virus security patch':

1. Title: Microsoft releases patches, File: bbcnews\003.txt

2. Title: Microsoft releases bumper patches, File: bbcnews\162.txt

Query (empty query to stop): cheap apple products
Results for query 'cheap apple products':

1. Title: Apple Mac mini gets warm welcome, File: bbcnews\033.txt

Query (empty query to stop): <user presses "enter" to end program>

Congratulations! You just built a working search engine! That's pretty impressive given

that you might not have known a lot about programming just 10 weeks ago. It's also a

– 11 –

testament to how powerful a tool programming can be. A little knowledge can go a long

way in building some really useful software. Happy searching! The rest of the assignment

is optional – though we think it’s a great deal of fun + learning.

[Optional] Part C: Take your search engine online!

As a celebration of what you have built, and as an exciting extension, let’s turn your python

program into a server which can deliver those search results to a browser. Woot! This

extension will give you exposure to some really interesting next steps beyond CS106A.

Write code in extension_server.py that responds to search requests! In order to do

so, link up your server to call the functions you defined in searchengine.py.

If you run the starter code for extension_server.py it will create a server which can

serve up the shell search page, but is unable to do any search. When a request comes to the

server without the empty string as a “command” the server returns the HTML of the search

– 12 –

page. HTML is the “markup language” of the world wide web – it’s the description of the

page with the search bar etc. To get started run the server:

> py extension_server.py

And navigate to http://localhost:8000 in a web-browser (such as Chrome, Safari or IE).

How exciting. Unfortunately, it is little more than a pretty poster. When you try to search

it doesn’t provide any results.

If you look at the terminal where your server is running you will notice that every time

someone types something into the search bar and hits Enter, you get a request. For example,

say someone types in “nice” (as shown below):

The client sends a request, which is received by your server, with the command “search”

and parameters that include the search query. The server currently prints the request out to

the console (as shown below), but doesn’t handle it.

{'command': 'search', 'params': {'query': 'nice'}}

You can directly recreate this request by going to

http://localhost:8000/search?query=nice

Currently your server responds with the empty string. To complete this milestone, change

the code to return a list of dictionaries, one dictionary per search result, with the key “title”

and the value being the text of the title to display.

That is all you need to do! Once you do so, your search engine at http://localhost:8000 will

start working as expected. How fun! It’s a hard task as it requires writing code in a class

which is a brand new experience.

http://localhost:8000/
http://localhost:8000/search?query=nice
http://localhost:8000/

– 13 –

Here are a few hints:

1. Check out the HitCounter example from class on May 29th.

2. Recall that request has two properties, commands and parameters. You can extract

the command with request.get_command() and the parameter dictionary

using request.get_params()

3. Your handle_request function has to return the list of dictionaries as a string.

You can use json.dumps(collection, indent=2) to turn any collection (e.g.

a variable that is a list or dictionary) into string format.

4. extension_server.py already imports the following functions from

searchengine.py: create_index, search and textfiles_in_dir.

You should call these functions! When do you want to create the index? When do

you want to search? You don’t need to do anything special to call them.

5. If you want your search engine to display more than just the title of an article, try

adding “url” and “snippet” to the dictionary representing one search result. It will

lead to a more exciting search result. These are extra extensions.

It is certainly not necessary, but we invite you to read the contents of

extension_client.html . This file describes the webpage you see (with the search

bar). It is commented so that a curious student could learn more about HTML, JavaScript

and CSS. Those aren’t things we teach in CS106A, but they are super cool!

A note on localhost: Localhost is a special URL which means “this computer”. People on

different computers won’t be able to access your python script over the internet using this

URL. To get a URL which other people can use, you can use a service like the one here:

https://ngrok.com/

https://ngrok.com/

– 14 –

[Optional] Extra/Extension Features

There are many other possibilities for optional extra features that you can add if you like,

potentially for extra credit. If you are going to do this, please submit two versions of your

program: one that meets all the assignment requirements, and a second extended version.

As usual, in the Assignment 7 project folder, we have provided a file called

extension.py that you can use if you want to write any extensions that you might want

to make based on this assignment. The file doesn't contain any useful code to begin with.

So, you only need to submit the extension.py file if you've written some sort of

extension in that file that you'd like us to see.

At the top of the files for an extended version (if you submit one), in your comment header,

you should comment what extra features you completed.

Here are a few extra extension ideas:

• Ranking function. The basic search program just lists all the documents that match the

query in no particular order. It would be much more useful, especially with large

collections of documents, if the documents were ranked (sorted) by their relevance to

the user's query. We talked about some ways to do this in class, but there are many

different approaches to this. Try implementing a ranking function that you think does a

good job of ordering the search results. As we talked about, that might involve

augmenting your index to store more information than just which terms appeared in

which documents, so you can use that information to determine how to rank the search

results.

• Stop word elimination. The English language has many words that appear frequently in

text, but don't have much value as far as content is concerned. These are words such as

"the", "and", "but", "a", etc. Such words are called stop words, and it would make your

index smaller if you removed the stop words from the index. (That also means you'd

potentially want to remove stop words from the user's query before doing a search.) Of

course, you can find out more about stop words (as well as find potential lists of them)

by searching the web for "stop words".

• Word stemming. In your current index, if a user searches for "section" they won't match

files that contain the word "sections" (but don't include the singular form of the word

"section"), even though files that talk about "sections" might be relevant to the user.

Stemming is the process of reducing words to their base form, so that (for example) both

"section" and "sections" would become, simply, "section". Word stemming is a

common feature in commercial search engines as it's very useful for helping people get

relevant results. As a start, you can find out more about word stemming from Wikipedia:

https://en.wikipedia.org/wiki/Stemming

Submitting your work

Once you've gotten all the parts of this assignment working, you're ready to submit! Make

sure to submit only the python files you modified for this assignment on Paperless. You

should make sure to (at least) submit the files:
common_elements.py

searchengine.py

https://en.wikipedia.org/wiki/Stemming

