
YEAH: Assignment 3

Images and Graphics
with Kara & Will!

Overview: Images

We use a SimpleImage module to help us visualize and
manipulate images

We can do things like:
● Read image from a file
● Loop over pixels of an image
● Access color data inside a pixel

For more detailed information,
check out the Image Reference Guide & Lecture 9: Images

http://web.stanford.edu/class/cs106a/handouts/08-image-reference.pdf
http://web.stanford.edu/class/cs106a/lectures/9-Images/

Part 1: Images

Finding forest fires
(Sandcastle Problem!)

Detecting Wildfires

Goal: Highlight areas where a
forest fire is active

● Step 1: Determine if pixel
is “sufficiently red”

● Step 2: If sufficiently
red, set its red value to
255 (and green/blue to 0).
If not sufficient, convert
to gray scale value.

From lecture...

Ghost

Problem: How do we convert these three
images with people in them into one image

without anyone in it?

If there are 4 images and the pixel at (0,0) in
each of the four looks like this:

then the red pixel (image3) is probably an
error/outlier

(0,0) in image1 (0,0) in image2 (0,0) in image3 (0,0) in image4

Basic idea

● For each (x,y) coordinate , we are going to find the
"best" pixel and put that pixel in our solution's (x,y)
pixel location

● "Best" pixel is the pixel that has the shortest distance
between itself and the average pixel

● The average pixel has the average red, green, and blue
values from each input pixel at that coordinate. So given
image1, image2, and image3, the average pixel should be
the average of image1’s, image2’s, and image3's RGB
values

Computing distance

● Use the euclidean distance formula
● Distance between points (x1, y1, z1) and (x2, y2, z2)

distance2 = (x1 - x2)
2 + (y1 - y2)

2 + (z1 - z2)
2

Image1 pixel at (10, 15)
pixel.red → 220
pixel.green → 240
pixel.blue → 190

Image3 pixel at (10, 15)
pixel.red → 210
pixel.green → 220
pixel.blue → 140

Image2 pixel at (10, 15)
pixel.red → 0
pixel.green → 10
pixel.blue → 20

Image1 pixel at (10, 15)
pixel.red → 220
pixel.green → 240
pixel.blue → 190

Image3 pixel at (10, 15)
pixel.red → 210
pixel.green → 220
pixel.blue → 140

Image2 pixel at (10, 15)
pixel.red → 0
pixel.green → 10
pixel.blue → 20

Average pixel of (10, 15):
pixel.red → 143.33
pixel.green → 156.67
pixel.blue → 116.67

Image1 pixel at (10, 15)
pixel.red → 220
pixel.green → 240
pixel.blue → 190

Image3 pixel at (10, 15)
pixel.red → 210
pixel.green → 220
pixel.blue → 140

Image2 pixel at (10, 15)
pixel.red → 0
pixel.green → 10
pixel.blue → 20

Average pixel of (10, 15):
pixel.red → 143.33
pixel.green → 156.67
pixel.blue → 116.67

distance
from
average:
18200

distance
from
average:
51400

distance
from
average:
9000

Image1 pixel at (10, 15)
pixel.red → 220
pixel.green → 240
pixel.blue → 190

Image3 pixel at (10, 15)
pixel.red → 210
pixel.green → 220
pixel.blue → 140

Image2 pixel at (10, 15)
pixel.red → 0
pixel.green → 10
pixel.blue → 20

Solution pixel at (10, 15)
pixel.red → 210
pixel.green → 220
pixel.blue → 140

Average pixel of (10, 15):
pixel.red → 143.33
pixel.green → 156.67
pixel.blue → 116.67

distance
from
average:
18200

distance
from
average:
51400

distance
from
average:
9000

Part 2: Graphics

Overview: Graphics

We utilize a Canvas and can create our drawings and images,
unlike reading in an outside image.

We can do things like:
● Draw shapes
● Create patterns

For more detailed information,
check out the Graphics Reference Guide & Lecture 10:Graphics

http://web.stanford.edu/class/cs106a/handouts/graphics-reference.html
http://web.stanford.edu/class/cs106a/lectures/10-Graphics/

Pyramid

Drawing a Pyramid

Goal: Draw a pyramid with any
number of bricks in its base

● Step 1: Draw a single brick
● Step 2: Starting at the

bottom of the pyramid, draw
BRICKS_IN_BASE - n bricks,
where n is how many rows
you’ve already drawn.

Example with BRICKS_IN_BASE = 14

bricks: 14
rows drawn: 0

bricks: 12
rows drawn: 2

bricks: 10
rows drawn: 4

bricks: 8
rows drawn: 6

bricks: 6
rows drawn: 8

bricks: 4
rows drawn: 10

bricks: 2
rows drawn: 12

bricks: 13
rows drawn: 1

bricks: 11
rows drawn: 3

bricks: 9
rows drawn: 5

bricks: 7
rows drawn: 7

bricks: 5
rows drawn: 9

bricks: 3
rows drawn: 11

bricks: 1
rows drawn: 13

Quilt

Task 1: Drawing Bars

● Step 1: Draw a rectangle of size width * height that has
its upper left corner at the pixel (x, y) with the color
light blue

● Step 2: Draw num_lines evenly spaced lines in the
rectangle
○ Starting at the left, each line should be drawn width / (num_lines -

1) to the right of the line drawn before it.

width / (NUM_LINES - 1) width / (NUM_LINES - 1)

NUM_LINES = 4

width / (NUM_LINES - 1)

Task 2: Drawing Eye

● Step 1: Draw a rectangle of size width * height that has its
upper left corner at the pixel (x, y) with the color light
blue

● Step 2: Draw a yellow oval width wide and height high, with
its top left corner at (x,y)

● Step 3: Draw num_lines from the center of oval to num_lines
points, evenly spaced, at bottom of the rectangle
○ Starting at the left, each line's ending point should be drawn width

/ (num_lines-1) to the right of the line drawn before it.

width /
(NUM_LINES-1)

width /
(NUM_LINES-1)

Note: all 3
lines have
the same
(x1,y1)

Task 3: Drawing Bowtie

● Step 1: Draw a light blue rectangle
● Step 2: Draw num_lines red lines.

○ All lines have the same x1 and x2 (they
all start at 0 and end at width - 1!)

○ The height is evenly divided by red
lines. For each line, calculate a y_delta
distance from the start point.

○ y1 should be y_delta from the top (or 0),
while y2 should be y_delta from the bottom
(or height - 1)

○ Remember that we subtract one to get the
actual final pixel values!

0 width

height

The first line goes from upper
left to lower right. The next
line will start y_delta lower

and end y_delta higher

0
+
y_

de
lt
a
-

1

ht - y_delta - 1

Build the Quilt

● Step 1: Compute the sub_width and the sub_height of each
quilt rectangle. Given n, the number of patches per
row/column, sub_width will be width // n

● Step 2: Use a double for loop to go through each quilt
patch, calculating each patch's top left corner (x,y)

● Step 3: At each patch, draw the bars, the eye, or the
bowtie (in rotation)

n=3 n=6

Good luck! :)

