YEAH: Assignment 3

Images and Graphics

with Kara & Will!

Overview: Images

We use a SimpleImage module to help us visualize and
manipulate images

We can do things like:

e Read image from a file
e Loop over pixels of an image
e Access color data inside a pixel

For more detailed information,
check out the Image Reference Guide & Lecture 9: Images

http://web.stanford.edu/class/cs106a/handouts/08-image-reference.pdf
http://web.stanford.edu/class/cs106a/lectures/9-Images/

Part 1: Images

Finding forest fires

(Sandcastle Problem!)

Detecting Wildfires

Goal: Highlight areas where a
forest fire 1is active

e Step 1l: Determine if pixel
is “sufficiently red”

e Step 2: If sufficiently
red, set its red value to
255 (and green/blue to 0).
If not sufficient, convert
to gray scale value.

From lecture...

def redscreen(main_filename, back_filename):

Implements the notion of "redscreening". That is,
the image in the main_filename has its "sufficiently"
red pixels replaced with pized from the corresponding x,y
location in the image in the file back_filename.
Returns the resulting "redscreened" image.
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:
average = (pixel.red + pixel.green + pixel.blue) // 3
See if this pixel is "sufficiently" red
if pixel.red >= average * INTENSITY_THRESHOLD:
If so, we get the corresponding pixel from the
back image and overwrite the pixel in
the main image with that from the back image.
X = pixel.x
y = pixel.y
image.set_pixel(x, y, back.get_pixel(x, y))
return image

Ghost

Problem: How do we convert these three
images with people 1in them into one image
without anyone in it?

7ﬁr-_—1

If there are 4 images and the pixel at (0,0) 1in
each of the four looks like this:

(0,0) in imagel (0,0) in image2 (0,0) in image3 (0,0) in image4

0000

then the red pixel (image3) 1is probably an
error/outlier

Basic idea

e For each (x,y) coordinate , we are going to find the
"best" pixel and put that pixel in our solution's (x,y)
pixel location

e '"Best" pixel 1s the pixel that has the shortest distance
between 1itself and the average pixel

e The average pixel has the average red, green, and blue
values from each input pixel at that coordinate. So given
imagel, image2, and image3, the average pixel should be
the average of imagel’s, image2’s, and image3's RGB
values

Computing distance

e Use the euclidean distance formula
e Distance between points (x,, y,, z,) and (x,, vy,, Z,)

distance® = (x, - x,)? + (y, - y,)?+ (z, - z,)?

Imagel pixel at (10, 15)
pixel.red - 220

pixel.green - 240
pixel.blue - 190

|
Image?2 pixel at

pixel.red - O
pixel.green - 10
pixel.blue - 20

(10,

15)

Image3 pixel at (10, 15)
pixel.red - 210
pixel.green - 220
pixel.blue — 140

Imagel pixel at (10,
pixel.red - 220
pixel.green - 240
pixel.blue - 190

15)

|
Image?2 pixel at (10, 15)

pixel.red - O
pixel.green - 10
pixel.blue - 20

Average pixel of (10,
pixel.red - 143.33
pixel.green — 156.67
pixel.blue - 116.67

15):

Image3 pixel at (10, 15)
pixel.red - 210
pixel.green - 220
pixel.blue — 140

=]

Imagel pixel at (10, 15)
pixel.red - 220

. distance
pixel.green - 240 from
pixel.blue - 190 average:

18200

|
Image?2 pixel at

pixel.red - O
pixel.green - 10
pixel.blue - 20

(10,

15)

distance
from
average:
51400

Image3 pixel at (10, 15)

pixel.red - 210
pixel.green - 220
pixel.blue - 140

distance
from
average:
9000

Average pixel of (10, 15):

pixel.red - 143.33
pixel.green —» 156.67
pixel.blue - 116.67

Imagel pixel at (10, 15)

pixel.red - 220

. distance
pixel.green - 240 from
pixel.blue - 190 average:

18200

|
Image?2 pixel at

pixel.red - O
pixel.green - 10
pixel.blue - 20

(10,

15)

distance
from
average:
51400

Image3 pixel at (10, 15)
pixel.red - 210
pixel.green — 220 | from

pixel_blue - 140 average:
9000

distance

Average pixel of (10, 15):

pixel.red - 143.33
pixel.green — 156.67
pixel.blue - 116.67

]

Solution pixel at
pixel.red - 210

pixel.green - 220
pixel.blue - 140

(10,

15)

Part 2: Graphics

Overview: Graphics

We utilize a Canvas and can create our drawings and images,
unlike reading in an outside image.

We can do things like:

e Draw shapes
e (Create patterns

For more detailed information,
check out the Graphics Reference Guide & Lecture 10:Graphics

http://web.stanford.edu/class/cs106a/handouts/graphics-reference.html
http://web.stanford.edu/class/cs106a/lectures/10-Graphics/

Pyramid

Drawing a Pyramid

Goal: Draw a pyramid with any
number of bricks in its base

e Step 1: Draw a single brick

e Step 2: Starting at the
bottom of the pyramid, draw
BRICKS_IN_BASE - n bricks,
where n i1s how many rows
you’ve already drawn.

Example with BRICKS_IN_BASE = 14

¢ pyramid - O X

© # bricks: 1

rows draWn: 13 _ '#br__lcks:z """""
% : < rows drawn; 12 '

[| [R :
| | | |« rows drawn: 10
l | | | U brTcksieTTTT :

| | | | | | S BFCke 10T :

. # bricks: 12
l l l l l l l l‘/ row;-lzi:rzw 2

Quilt

Task 1: Drawing Bars

e Step 1: Draw a rectangle of size width x height that has
its upper left corner at the pixel (x, y) with the color
light blue

e Step 2: Draw num_lines evenly spaced lines in the

rectangle
o Starting at the left, each 1line should be drawn width / (num_lines -
1) to the right of the line drawn before 1t.

width / (NUM_LINES - 1) width / (NUM_LINES - 1) width / (NUM_LINES - 1)

NUM_LINES = 4

Task 2: Drawing Eye

e Step 1: Draw a rectangle of size width * height that has -its
upper left corner at the pixel (x, y) with the color light
blue

e Step 2: Draw a yellow oval width wide and height high, with
its top left corner at (x,y)

e Step 3: Draw num_lines from the center of oval to num_lines

points, evenly spaced, at bottom of the rectangle
o Starting at the left, each line's ending point should be drawn width
/ (num_lines-1) to the right of the 1line drawn before -it.

Note: all 3
lines have
the same

< (x,5y,)

width / width /
(NUM_LINES-1) (NUM_LINES-1)

Task 3: Drawing Bowtie

0 width

e Step 1: Draw a light blue rectangle

-1

e Step 2: Draw num_lines red lines.

0 + y_delta

o All lines have the same x, and x, (they
all start at 0 and end at width - 1!)

o The height is evenly divided by red
lines. For each line, calculate a y_delta
distance from the start point.

o y,should be y_delta from the top (or 0),
while y, should be y_delta from the bottom
(or height - 1)

o Remember that we subtract one to get the

actual final pixel values! The first line goes from upper

left to lower right. The next
line will start y_delta lower
and end y_delta higher

-3y

T - e3ep K

height

Build the Quilt

Step 1: Compute the sub_width
quilt rectangle. Given n, the
row/column, sub_width will be
Step 2: Use a double for loop

patch, calculating each patch'

and the sub_height of each
number of patches per
width // n

to go through each quilt

s top left corner (x,y)

Step 3: At each patch, draw the bars, the eye, or the

bowtie (in rotation)

n=3

-

Good luck! :)

