YEAH: Assignment 4



Part 1: Lists



Greater than 10

Goal: Given a list, return a
new list of all the elements
of the original list that
were greater than 10

e If there are no elements
greater than 10 or no
elements at all, return an
empty list

e (Create a new list and
don't modify the old list

greater_than_10([])

[]

greater_than_10([20, 6, 12, -3, 14])

[20, 12, 14]




Removing Duplicates from User Input

Goal: Prompt a user for
integers until 0 is entered
and return a list of the
unique integers given

Enter
Enter
Enter
Enter
Enter

value (0 to
value (0 to
value (0 to
value (0 to
value (0 to

stop):
stop):
stop) :
stop) :
stop):

ON NDNDNDN

e read_list()
e remove_duplicates(num_list)

Y

[2, 4]

Hint: Check out this week's section problems if you're stuck

Hint: Think about types




Liplists

Goal: given two lists, pair up numbers (e.g. first
element from list1 with first element of list2) and
return a list of lists where each sublist is the pairing

e Step 1: Make one pairing into a list
e Step 2: Add that list to a list of lists

If there are no elements in list1 and list2, just return
an empty list

Hint: Think of how the two sides of a zipper come together



Liplist Example

input input
1stl = [1\] 1st2 =[9] 1stl = [1\,2] 1st2 =[9,7]
< re N S
[[1,9]] (1,91, [2,7]]

output output



Part 2: Sand



[demo of what Sand should look like]



The Sand World

World
r ‘s’ r
r ‘r’
r r

Elements

Key

Sand

lSl

Rock

lri

Empty

None




Element at x=1, y=0 1is at
grid[0][1]

REMEMBER For this presentation,
when we use (x,y) we are
referring to traditional

A grid's x,y coordinates coordinates, not grid

are reversed coordinates




Milestone 1: Moving elements in grid

do_move(grid, x1, y1, x2, y2)

Take what is at (x1,y1) of the grid, move it to (x2,y2), and
set (x1,y1) to be None

grid after a call to
\ do_move(grid, x1, y1, x2, y2)
@ ISI > 0 ISI




Milestone 2: Checking legal moves

There are 3 legal moves:

e moving straight down, if (x2,y2) has nothing in it

e moving diagonally left, if the spot immediately to left
of (x1,y1) is empty and if (x2,y2) has nothing in it

e moving diagonally right, if the spot immediately to right
of (x1,y1) is empty and if (x2,y2) has nothing in it

For all of these moves, the destination (x2,y2) must be
within the grid boundaries



Diagonal Moves

What are the
coordinates of
destinations for
diagonal moves?




Diagonal Moves

What are the
coordinates of
destinations for
diagonal moves?

(1,0)
(x1,yl)
0 1 2
‘ S ’
//
(0,1) (2,1)

(x1 - 1,yl + 1)

(x1 + 1,yl +1)




Milestone 3: Gravity

e Step 1: check if straight down is valid

e Step 2: if straight down didn't work, check if you can go
diagonal

e Step 3: if no legal moves, don't do anything

before

after

before

after

lr lsl

lrl

’

‘s

lrl

]

r

v

Irl

‘

r

’

‘

S

’

r 1

sand at (1, 0) moved
directly down to (1,1)

sand at (1, 0) moved
diagonally left to (0,1)




Milestone 4: Loop through the whole grid

e For each (x,y) location, call gravity
e But what order should we iterate over all these

locations?
o ORDER MATTERS

Iterating from top to bottom Iterating from bottom to top
call . call sand call d call
gravity Nothing gravity moved gravity moved gravity
on (0,0) changed! on (0,1) down one on (1,0) down one on (0,0)
1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1
1 S 1 - 5 1 S 1 - 5 1 S 1 - 5 1 s 1 _— - —_—
[
S S S

<
=3
®
o o
5
®




Milestone 4: Loop through the whole grid

e For each (x,y) location, call gravity
e But what order should we iterate over all these

locations?
o ORDER MATTERS

CORRECT

. i OUTPUT
Iterating from top to bottom Iterating from bottom to top
call ) call sand call d call nd
gravity Nothing gravity moved gravity moved gravity H ved
on (0,0) changed! on (0,1) down one on (1,0) down one on (0,0) ! down one
ISI ISI ISI ISI ISI ISI ISI
1 1 - 5 1 1 - 5 1 1 - 5 1 1 _ - 5 . 1 1
S S S S i S
S S S S




Milestone 5: Create Brownian motion

Giving sand Brownian motion:

num = random.randrange(1600) coin = random.randrange(2)

0 1

num < brownian



Make sure your functions work in harmony!

e All of your functions
should work in harmony
with one another

e If you already validate
values (error checking)
in one function, don't
have to do it again 1in
some helper function






