
YEAH: Assignment 4

Tori and Kara

Part 1: Lists

Greater than 10

Goal: Given a list, return a
new list of all the elements
of the original list that
were greater than 10

● If there are no elements
greater than 10 or no
elements at all, return an
empty list

● Create a new list and
don't modify the old list

greater_than_10([])

greater_than_10([20, 6, 12, -3, 14])

[]

[20, 12, 14]

Removing Duplicates from User Input

Goal: Prompt a user for
integers until 0 is entered
and return a list of the
unique integers given

● read_list()
● remove_duplicates(num_list)

Enter value (0 to stop): 2
Enter value (0 to stop): 2
Enter value (0 to stop): 4
Enter value (0 to stop): 2
Enter value (0 to stop): 0

[2, 4]

Hint: Check out this week's section problems if you're stuck
Hint: Think about types

Ziplists

Goal: given two lists, pair up numbers (e.g. first
element from list1 with first element of list2) and
return a list of lists where each sublist is the pairing

● Step 1: Make one pairing into a list
● Step 2: Add that list to a list of lists

If there are no elements in list1 and list2, just return
an empty list

Hint: Think of how the two sides of a zipper come together

Ziplist Example

lst1 = [1] lst2 =[9]

[[1,9]]

lst1 = [1,2] lst2 =[9,7]

[[1,9], [2,7]]

input input

output output

Part 2: Sand

[demo of what Sand should look like]

The Sand World

Key

Sand ‘s’

Rock ‘r’

Empty None

World Elements

[[‘r’, ‘s’, ‘r’],
[‘r’, None, ‘r’]]

[[‘r’, None, ‘r’],
[‘r’, ‘s’, ‘r’]]

‘r’ ‘s’ ‘r’

‘r’ ‘r’

‘r’ ‘r’

‘r’ ‘s’ ‘r’

REMEMBER
A grid's x,y coordinates

are reversed

Element at x=1, y=0 is at
grid[0][1]

For this presentation,
when we use (x,y) we are
referring to traditional
coordinates, not grid
coordinates

Milestone 1: Moving elements in grid

do_move(grid, x1, y1, x2, y2)

Take what is at (x1,y1) of the grid, move it to (x2,y2), and
set (x1,y1) to be None

's'

grid after a call to
do_move(grid, x1, y1, x2, y2)

's'0 0

0 0 11

Milestone 2: Checking legal moves

There are 3 legal moves:

● moving straight down, if (x2,y2) has nothing in it
● moving diagonally left, if the spot immediately to left

of (x1,y1) is empty and if (x2,y2) has nothing in it
● moving diagonally right, if the spot immediately to right

of (x1,y1) is empty and if (x2,y2) has nothing in it

For all of these moves, the destination (x2,y2) must be
within the grid boundaries

Diagonal Moves

What are the
coordinates of
destinations for
diagonal moves?

‘s’
0 1 2

0

1

(1,0)
(x1,y1)

Diagonal Moves

What are the
coordinates of
destinations for
diagonal moves?

‘s’
0 1 2

0

1

(1,0)
(x1,y1)

(0,1)
(x1 - 1,y1 + 1)

(2,1)
(x1 + 1,y1 +1)

Milestone 3: Gravity

‘r’

‘s’ 'r' ‘r’

after

● Step 1: check if straight down is valid
● Step 2: if straight down didn't work, check if you can go

diagonal
● Step 3: if no legal moves, don't do anything

‘r’ ‘s’ ‘r’

‘r’ ‘r’

before

‘r’ ‘r’

‘r’ ‘s’ ‘r’

after

sand at (1, 0) moved
directly down to (1,1)

‘s’ ‘r’

'r' ‘r’

before

sand at (1, 0) moved
diagonally left to (0,1)

Milestone 4: Loop through the whole grid

● For each (x,y) location, call gravity
● But what order should we iterate over all these

locations?
○ ORDER MATTERS

's'

's'

call
gravity
on (0,0)

's'

's'

Nothing
changed!

Iterating from top to bottom

's'

's'

call
gravity
on (0,1)

's'

's'

's'

's'

call
gravity
on (1,0)

's'

's'

sand
moved

down one

Iterating from bottom to top

's'

's'

call
gravity
on (0,0)

's'

's'

sand
moved

down one

sand
moved

down one

Milestone 4: Loop through the whole grid

● For each (x,y) location, call gravity
● But what order should we iterate over all these

locations?
○ ORDER MATTERS

's'

's'

call
gravity
on (0,0)

's'

's'

Nothing
changed!

Iterating from top to bottom

's'

's'

call
gravity
on (0,1)

's'

's'

's'

's'

call
gravity
on (1,0)

's'

's'

sand
moved

down one

Iterating from bottom to top

's'

's'

call
gravity
on (0,0)

's'

's'

sand
moved

down one

sand
moved

down one

CORRECT
OUTPUT

Milestone 5: Create Brownian motion

coin = random.randrange(2) num = random.randrange(100)

Giving sand Brownian motion:

0 1

num < brownian

Make sure your functions work in harmony!

● All of your functions
should work in harmony
with one another

● If you already validate
values (error checking)
in one function, don't
have to do it again in
some helper function

Good luck!

