
BabyNames

by Juliette Woodrow and Kara Eng

~Logistics~
● Due Monday June

1st 1:30pm PDT
● 2 parts

○ Dictionaries
○ BabyNames

Assignment Overview

● Part 1: Dictionaries
○ Part A: Reading the file
○ Part B: Calculating the number of infections per day

● Part 2: Baby Names
○ Data Processing
○ Connecting Data to Graphics
○ Data Visualization

Data Analysis

Problem: Data Analysis

● Given a file with data in it. Each line of the file comes
in the format:
location, day1Total, day2Total, ... , day7Total

● Note: each line has a unique location, you don't need to
worry about duplicates

● implement def load_data(filename)
● Goal: build a dictionary where each key is the location

and the value is a list of daily infection totals:

{location: [day1Total, day2Total, ... , day7Total]}

Problem: Data Analysis Part 1

● implement def daily_cases(cumulative)
● Goal: build a dictionary where each key is the location

and the value is a list of new infections per day:

{location: [day1NewInfections, day2NewInfections, ... ,
day7NewInfections]}

Hint: you're building the new list based on the values of
the old list, one by one. The first value for both lists is
the same. Try doing it by hand!

Problem: Data Analysis Part 2

BabyNames

BabyNames - IMPORTANT NOTE

You should not change any of the function
names or parameter requirements that we

already provide to you in the starter code.

BabyNames Overview

BabyNames Overview

Social Security Administration
baby name data in txt files

BabyNames Overview

Social Security Administration
baby name data in txt files

BabyNames Overview

1980 1990 2000 2010

Kara 1

Kara 6

Kara 4

Kara 2

Juliette
*

Juliette
1

Juliette
8

Juliette
1

Social Security Administration
baby name data in txt files

This super cool visualization
of the data showing how name
popularity varies over time.

That seems like a lot… Let’s break it down

That seems like a lot… Let’s break it down

BabyNames

That seems like a lot… Let’s break it down

BabyNames

Data Processing

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

babynames.py

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

babynames.py

Milestones 1-3:

1. Add a single
name

2. Processing a
whole file

3. Processing
many files
and enabling
search

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

babynames.py babygraphics.py

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

babynames.py babygraphics.py

Milestones 4-6:

1. Run provided
graphics
code

2. Draw the
background
grid

3. Plot the
baby name
data

That seems like a lot… Let’s break it down

BabyNames

Data Processing Data Visualization

babynames.py babygraphics.py

Milestones 1-3:

1. Add a single
name

2. Processing a
whole file

3. Processing
many files
and enabling
search

Milestones 4-6:

1. Run provided
graphics
code

2. Draw the
background
grid

3. Plot the
baby name
data

Let’s start with Data Processing

Let’s start with Data Processing

How can we efficiently store the data?

Let’s start with Data Processing

How can we efficiently store the data?

name rank at each year

Let’s start with Data Processing

How can we efficiently store the data?

name rank at each year
name_data

{
 name: rank at each year
}

Let’s start with Data Processing

How can we efficiently store the data?

name rank at each year

year rank

Let’s start with Data Processing

How can we efficiently store the data?

name rank at each year

year rank

name_data

{
 name: {year: rank, year: rank}
}

Let’s start with Data Processing

How can we efficiently store the data?

name rank at each year

year rank

} outer dictionary

inner dictionary}

DataProcessing - Milestone 1

DataProcessing - Milestone 1

1. Add a single name: Write a function in babynames.py for adding some partial
name/year/count data to a passed in dictionary.

DataProcessing - Milestone 1

1. Add a single name: Write a function in babynames.py for adding some partial
name/year/count data to a passed in dictionary.

def add_data_for_name(name_data, year, rank, name):

“””

Adds the given year and rank to the associated name in the name_data dictionary.

“””

DataProcessing - Milestone 1

1. Add a single name: Write a function in babynames.py for adding some partial
name/year/count data to a passed in dictionary.

def add_data_for_name(name_data, year, rank, name):

“””

Adds the given year and rank to the associated name in the name_data dictionary.

“””

DataProcessing - Milestone 1

1. Add a single name: Write a function in babynames.py for adding some partial
name/year/count data to a passed in dictionary.

def add_data_for_name(name_data, year, rank, name):

“””

Adds the given year and rank to the associated name in the name_data dictionary.

“””

DataProcessing - Milestone 1 - The “Sammy issue”

DataProcessing - Milestone 1 - The “Sammy issue”

In some cases, a name shows up twice in one year. Once for a
male name and once for a female name.

DataProcessing - Milestone 1 - The “Sammy issue”

In some cases, a name shows up twice in one year. Once for a
male name and once for a female name.

To handle this, store whichever rank number is smaller

DataProcessing - Milestone 1 - The “Sammy issue”

In some cases, a name shows up twice in one year. Once for a
male name and once for a female name.

To handle this, store whichever rank number is smaller

Example: If ‘Sammy’ shows up as both rank 100 (from male
data) and 200 (from female data) in 1990, you should only
store ‘Sammy’ as having rank 100 for year 1990.

DataProcessing - Milestone 1 - The “Sammy issue”

In some cases, a name shows up twice in one year. Once for a
male name and once for a female name.

To handle this, store whichever rank number is smaller

Example: If ‘Sammy’ shows up as both rank 100 (from male
data) and 200 (from female data) in 1990, you should only
store ‘Sammy’ as having rank 100 for year 1990.

DataProcessing - Milestone 1 - TESTING

DataProcessing - Milestone 1 - TESTING

We provided you with two doctest for this function.

DataProcessing - Milestone 1 - TESTING

We provided you with two doctest for this function.

You should write more doctests to test other cases before
moving on to the next milestone

DataProcessing - Milestone 1 - TESTING

We provided you with two doctest for this function.

You should write more doctests to test other cases before
moving on to the next milestone

One idea: add a doctest for the “Sammy issue”

DataProcessing - Milestone 2

DataProcessing - Milestone 2

2. Processing a whole file: Write a function for processing an entire data
file and adding its data to a dictionary.

DataProcessing - Milestone 2

2. Processing a whole file: Write a function for processing an entire data
file and adding its data to a dictionary.

def add_file(name_data, filename):

“””

Reads the information from the specified file and populates the name_data

dictionary with the data found in the file.

“””

DataProcessing - Milestone 2

2. Processing a whole file: Write a function for processing an entire data
file and adding its data to a dictionary.

def add_file(name_data, filename):

“””

Reads the information from the specified file and populates the name_data

dictionary with the data found in the file.

“””

We can use the helpful add_data_for_name function that we just wrote!

DataProcessing - Milestone 2

2. Processing a whole file: Write a function for processing an entire data
file and adding its data to a dictionary.

def add_file(name_data, filename):

“””

Reads the information from the specified file and populates the name_data

dictionary with the data found in the file.

“””

We can use the helpful add_data_for_name function that we just wrote!

DataProcessing - Milestone 2 - File Format

DataProcessing - Milestone 2 - File Format

The first line of each file is the year

DataProcessing - Milestone 2 - File Format

The first line of each file is the year

Following lines in file have format:

rank, male name, female name

DataProcessing - Milestone 2 - File Format

The first line of each file is the year

Following lines in file have format:

rank, male name, female name

*There may be some extra whitespace
chars separating data we care about that
you will need to remove*

DataProcessing - Milestone 2 - TESTING

DataProcessing - Milestone 2 - TESTING

Tests are provided for this function using the small test
files small-2000.txt and small-2010.txt

These will build up a rudimentary name_data dictionary

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

def read_files(filenames):

“””

Reads the data from all files specified in the provided list

into a single name_data dictionary and then returns that dictionary.

“””

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

def read_files(filenames):

“””

Reads the data from all files specified in the provided list

into a single name_data dictionary and then returns that dictionary.

“””

Input = a list of filenames containing baby name data

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

def read_files(filenames):

“””

Reads the data from all files specified in the provided list

into a single name_data dictionary and then returns that dictionary.

“””

Input = a list of filenames containing baby name data

Output = name_data (dictionary) storing all baby name data in an effective
manner

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

def search_names(name_data, target):

“””

Given a name_data dictionary that stores baby name information and a target string,

returns a list of all names in the dictionary that contain the target string.

“””

DataProcessing - Milestone 3

3. Processing many files and enabling search: Write one function for
processing multiple data files and one function for interacting with our data
(searching for data around a specific name).

def search_names(name_data, target):

“””

Given a name_data dictionary that stores baby name information and a target string,

returns a list of all names in the dictionary that contain the target string.

“””

Should be case insensitive: ‘aa’ and ‘AA’ should both return ‘Aaliyah’

‘A’ should return both ‘Kara’ and ‘Brahm’

DataProcessing - Milestones 1-3 - TESTING

DataProcessing - Milestones 1-3 - TESTING

main() in babynames.py to help you test these milestones

DataProcessing - Milestones 1-3 - TESTING

main() in babynames.py to help you test these milestones

1. Testing read_files(filenames)
a. Provide one or more baby data file arguments, all of which will be

passed into the read_files() function you have written
b. This data is then printed to the console by the print_names()

function we have provided, which prints the names in alphabetical
order, along with their ranking data.

Examples: (If you are using a mac, use python3 instead of py)

DataProcessing - Milestones 1-3 - TESTING

main() in babynames.py to help you test these milestones

2. Testing search_names(name_data, target)

If the first 2 command line arguments are "-search target",
then main() reads in all the data, calls your search_names()
function to find names that have matches with the target
string, and prints those names.

Connecting the Data to the Graphics - Milestone 4

Connecting the Data to the Graphics - Milestone 4

There is provided code in babygraphics.py to set up a
drawing canvas and the ability to enter names and target
strings.

Connecting the Data to the Graphics - Milestone 4

There is provided code in babygraphics.py to set up a
drawing canvas and the ability to enter names and target
strings.

In babygraphics.py, the provided main() function takes care
of calling your babynames.read_files() function to read in
the baby name data and populate the name_data dictionary.

Connecting the Data to the Graphics - Milestone 4

There is provided code in babygraphics.py to set up a
drawing canvas and the ability to enter names and target
strings.

In babygraphics.py, the provided main() function takes care
of calling your babynames.read_files() function to read in
the baby name data and populate the name_data dictionary.

Your job: figuring out how to write functions to graph the
contents of the name_data dictionary.

Connecting the Data to the Graphics - Milestone 4
First, run the command: (use python3 for macs)

> py babygraphics.py

That will pop up a blank baby name graphical window

Connecting the Data to the Graphics - Milestone 4
First, run the command: (use python3 for macs)

> py babygraphics.py

That will pop up a blank baby name graphical window

To test this (and to test out the search_name()) function
you wrote in Milestone 3, type a search string into the text
field at the bottom of the window and then hit enter.

Connecting the Data to the Graphics - Milestone 4
First, run the command: (use python3 for macs)

> py babygraphics.py

That will pop up a blank baby name graphical window

To test this (and to test out the search_name()) function
you wrote in Milestone 3, type a search string into the text
field at the bottom of the window and then hit enter.

You should see a text field pop up in the bottom of the
screen showing all names in the data set that match the
search string.

Connecting the Data to the Graphics - Milestone 4
First, run the command: (use python3 for macs)

> py babygraphics.py

That will pop up a blank baby name graphical window

To test this (and to test out the search_name()) function
you wrote in Milestone 3, type a search string into the text
field at the bottom of the window and then hit enter.

You should see a text field pop up in the bottom of the
screen showing all names in the data set that match the
search string.

Once you see that this works correctly, you have completed
this milestone !!!

Data Visualization

● Milestone 5: Drawing the background grid
● Milestone 6: Plot the baby name data
● Let's do an example

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

width = 200

he
ig

ht
 =

 1
00

Milestone 5:
Draw the
background

grid

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

width = 200

he
ig

ht
 =

 1
00

Draw in the
margins

(not the one on the right)

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

width = 200

he
ig

ht
 =

 1
00

the actual canvas
that you're

worrying about
because of margins

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Draw the decade
lines and labels

spacer spacer spacer spacer

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Draw the decade
lines

They'll evenly
divide the
actual_width

spacer spacer spacer spacer

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Done with
Milestone 5

spacer spacer spacer spacer

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Starting Milestone
6

spacer spacer spacer spacer

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Divide the
actual_height you're
working with to be

proportional with our
ranks

#1

#10

#5

#3

#2

#4

#7

#9

#6

#8

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

{'Kara': {1980: 1, 1990: 6,
2000: 4, 2010: 2},
'Juliette':{1990: 8, 2000: 1,
2010: 1}} 1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Graph a single name's
rank for one decade

#1

#10

#5

#3

#2

#4

#7

#9

#6

#8

Kara 1

Note: you don't actually draw the points, you
just draw the lines connecting them

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

{'Kara': {1980: 1, 1990: 6,
2000: 4, 2010: 2},
'Juliette':{1990: 8, 2000: 1,
2010: 1}} 1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Graph a single name's
rank for the next
decade and connect

the points

Kara 1

Kara 6

Note: you don't actually draw the points, you
just draw the lines connecting them

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

{'Kara': {1980: 1, 1990: 6,
2000: 4, 2010: 2},
'Juliette':{1990: 8, 2000: 1,
2010: 1}} 1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Repeat for all
decades

Kara 1

Kara 6

Kara 4

Kara 2

Note: you don't actually draw the points, you
just draw the lines connecting them

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

{'Kara': {1980: 1, 1990: 6,
2000: 4, 2010: 2},
'Juliette':{1990: 8, 2000: 1,
2010: 1}} 1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Do it for all other
specified names

Kara 1

Kara 6

Kara 4

Kara 2

Juliette *

Juliette 1

Juliette 8

Juliette 1

Note: you don't actually draw the points, you
just draw the lines connecting them

Let's see a smaller
version

● GRAPH_MARGIN_SIZE = 10
● Instead of 1000 ranks,

there are only 10
● Instead of 11 decades,

there are only 4

{'Kara': {1980: 1, 1990: 6,
2000: 4, 2010: 2},
'Juliette':{1990: 8, 2000: 1,
2010: 1}} 1980 1990 2000 2010

width = 200

he
ig

ht
 =

 1
00

Done with Milestone 6

Kara 1

Kara 6

Kara 4

Kara 2

Juliette *

Juliette 1

Juliette 8

Juliette 1

Note: you don't actually draw the points, you
just draw the lines connecting them

Check out this week's
section problems with
Big Tweet Data for
help

Good luck!

