
Chris Piech and Mehran Sahami Handout #8

CS 106A April 29, 2020

Graphics Reference Guide

Using Tk

One of the most common libraries to create graphics in Python is called Tk. It’s the library

we’ll be using in this class as well. To use the Tk library in a program you must import it

at the top of your program (as shown below). The actual library name is named tkinter.

import tkinter

The Canvas

The drawing model in Tk is that you have a canvas (much like a painting) where you are

going to draw various shapes. The canvas is simply a grid of pixels that have x, y values.

The coordinate (0, 0) is in the upper left-hand corner of the canvas. The values of x increase

as you move to the right. The values of y increase as you move down. So, you can think

of the canvas as follows:

When we want to draw shapes on a canvas, we call functions on that canvas that “create”

the shape we want to draw. These shapes then appear on the canvas. In CS106A, we will

generally provide the code that creates the canvas for you, so all you need to worry about

is adding shapes to that canvas. For the remainder of this handout, we will assume that an

object named canvas has already been created, and it represents the Tk canvas that you’ll

be drawing on. Below we provide a brief tour of some of the different shapes you can draw

in a canvas as well as highlight a few of the options you have with regard to how those

shapes look.

Drawing lines

To draw lines on a canvas, the function we call is named create_line, and we would

use it as shown below:

canvas.create_line(x1, y1, x2, y2)

The parameters (x1, y1) set the starting point of the line and (x2, y2) set the ending

point of the line.

y

(0,0) x

- 2 -

For example, the following command would draw a line from location (10, 20) to (100, 50)

on the canvas:

canvas.create_line(10, 20, 100, 50)

We can also create colored lines, by including the named parameter fill= as shown

below (here the line drawn will be green). Note that the name of the color is specified as

a string (i.e., it should be inside single/double quotes).

canvas.create_line(x1, y1, x2, y2, fill='green')

By default (if the fill= parameter is not included), lines will be black. Here is just a

sample of some of the common colors you can set in Tk:
red

blue

green

yellow

white

black

purple

brown

orange

gray

pink

tan

chartreuse

If you’re interested, you can find a ridiculously long list of colors in the Tk documentation:
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm

Here is an example of some line drawing code and the resulting image that is produced.

def draw(canvas):

 canvas.create_line(10, 20, 100, 50)

 canvas.create_line(0, 0, 200, 200, fill='red')

 canvas.create_line(200, 10, 150, 100, fill='green')

 canvas.create_line(150, 100, 250, 100, fill='green')

 canvas.create_line(250, 100, 200, 10, fill='green')

https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm

- 3 -

Drawing rectangles

You can also draw rectangles using the create_rectangle function. The parameters

for drawing a rectangle use the notion of a “bounding box.” The idea of a bounding box is

that you specify the coordinates of the upper left-hand corner and lower right-hand corner

of the rectangle you want to draw, which then define the boundaries of the “box” that

specifies the rectangle. The create_rectangle function is shown below.

canvas.create_rectangle(up_left_x, up_left_y, low_right_x, low_right_y)

The parameters (up_left_x, up_left_y) specify the (x, y) location of the upper left-

hand corner of the rectangle. The parameters (low_right_x, low_right_y) specify

the (x, y) location of the lower right-hand corner of the rectangle.

For example, the following command would draw a rectangle with upper left-hand corner

at (5, 50) and lower right-hand corner at (100, 200) on the canvas:

canvas.create_rectangle(5, 50, 100, 200)

That would appear as:

By default, rectangles are black outlines (the rectangle is not filled in). As with lines, we

can create colored rectangles. Here we can set the color of the outline of the rectangle

using the named parameter outline= and we can also specify a color to fill in the

rectangle using the named parameter fill=. Note that the outline and fill are separate, so

if you want a rectangle that is a solid both on its outline and filled in interior, you need to

specify both parameters. By default (if the outline= and/or fill= parameter are not

included) the color will be black.

- 4 -

Examples of using these parameters are shown in the example below:

canvas.create_rectangle(10, 10, 50, 50, outline='blue')

canvas.create_rectangle(10, 60, 50, 100, fill='red')

canvas.create_rectangle(10, 110, 50, 150, fill='black', outline='orange')

canvas.create_rectangle(10, 160, 50, 200, fill='green', outline='green')

Immediately below we show the resulting image that is produced (the rectangles shown in

the picture below are in descending order, corresponding to the order of the commands that

created them). It might be difficult to see, but the second rectangle has a black outline

around it (since the outline= parameter was not set in the second rectangle, so the default

outline color is black). The third rectangle, which is filled in with black, actually has an

orange outline around it. The fourth rectangle is all green since both it’s fill and outline

are set to green.

Drawing ovals

You can also draw ovals using the create_oval function. The parameters for drawing

an oval are similar to those for a rectangle and use the notion of a “bounding box.” Here,

the bounding box for the oval is that you specify the coordinates of the upper left-hand

corner and lower right-hand corner of an imaginary rectangle that specifies the size of the

oval to draw. Basically, the oval drawn will have its top, bottom, right, and left just

touching the sides of the bounding box you specify.

- 5 -

The create_oval function is shown below.

canvas.create_rectangle(up_left_x, up_left_y, low_right_x, low_right_y)

The parameters (up_left_x, up_left_y) specify the (x, y) location of the upper left-

hand corner of the bounding box for the oval. The parameters (low_right_x,

low_right_y) specify the (x, y) location of the lower right-hand corner of the bounding

box for the oval.

For example, the following command would draw an oval with upper left-hand corner at

(5, 50) and lower right-hand corner at (100, 200) on the canvas:

canvas.create_oval(5, 50, 100, 200)

That would appear as:

As with rectangles, by default, ovals are black outlines (not filled in). But you can create

colored ovals by using the named parameters outline= and fill= which work the same

for ovals as they do for rectangles. To make clear the notion of a bounding box, below we

draw a green filled oval drawn on top of an outline rectangle, where both the oval and

rectangle have the same bounding box coordinates.

canvas.create_rectangle(10, 50, 260, 200)

canvas.create_oval(10, 50, 260, 200, outline='green', fill='green')

- 6 -

Drawing text

You can draw test using the create_text function. The parameters for drawing text

include the (x, y) location on the canvas where the text should appear, the “anchoring”

location (we will just use 'w' for West, which means the (x, y) location of the text specifies

the starting point (left-hand or west side) of the text), the font for the text, and the text to

be drawn. An example of the create_text function is shown below.

canvas.create_text(x, y, anchor='w', font='Times', text='hi there')

For example, the following command would draw the text hi there is Times font starting at

location (10, 5):

canvas.create_text(10, 50, anchor='w', font='Times', text='hi there')

That would appear as:

- 7 -

Ordering of drawings

Objects are drawn on the canvas in the order in which they are created by your code. So,

if you draw an object after another some other object in your code, the second object drawn

can potentially cover (occlude) part of the object that was drawn first. This is sometimes

referred to as the z-order of the objects.

As an example, below, we first draw a yellow rectangle, then draw an orange oval (which

partly overlaps the rectangle), and then some text (that is on top of both the rectangle and

the oval).

canvas.create_rectangle(10, 50, 150, 200, fill='yellow', outline='yellow')

canvas.create_oval(100, 100, 200, 220, fill='orange', outline='orange')

canvas.create_text(70, 170, anchor='w', font='Times', text='good times!')

That would appear as:

That gives you enough of the basics of drawing with Tk, so you can make some pretty

beautiful drawings. Enjoy!

