
Control Flow Review Session

Will Kenney and Juliette Woodrow

Todays ~Flow~

● if, if/else, and if/elif/else
● while loops
● for loop variations
● range function
● printing vs. returning
● Top Down Decomposition
● Incremental Testing

○ Doctests
● Answer any of your questions
● Practice Problem

Control Flow Review

Thanks to Brahm Capoor for these awesome slides

Control flow: the steps our program takes

if front_is_clear():
sick code here

Control flow: the steps our program takes

if front_is_clear():
sick code here

if statements require a
condition

Control flow: the steps our program takes

if front_is_clear():
sick code here

conditions evaluate to
True or False

Control flow: the steps our program takes

if front_is_clear():
sick code here

An if statement will only
execute if the condition

evaluates to True
if front_is_clear == TRUE

Control flow: the steps our program takes

if front_is_clear():
sick code here

If the condition is True, the
code inside the if statement will

happen exactly once

Control flow: the steps our program takes

if front_is_clear():
sick code here

more sick code here

Once the code inside the if
statement has completed, the
program moves on, even if the

condition is still True

Control flow: the steps our program takes

if front_is_clear():
sick code here

else:
different sick code here

Control flow: the steps our program takes

if front_is_clear():
sick code here

else:
different sick code here

Sometimes we want to do one
thing when a condition is True
and something else when that

condition is False

Control flow: the steps our program takes

if front_is_clear():
sick code here

elif beepers_present():
other sick code here

else:
even more sick code here

Control flow: the steps our program takes

if front_is_clear():
sick code here

elif beepers_present():
other sick code here

else:
even more sick code here

Sometimes we want to do one
thing when one condition is

True and something else when
another that condition is True

Control flow: the steps our program takes

if front_is_clear():
sick code here

elif beepers_present():
other sick code here

elif beepers_not_present():
even more sick code here

Important Note: If you
only use if/elifs, make
sure you consider all
cases.

Control flow: the steps our program takes

while front_is_clear():
sick code here

Control flow: the steps our program takes

while front_is_clear():
sick code here

while loops also require
a condition, which

behaves in exactly the
same way

Control flow: the steps our program takes

while front_is_clear():
sick code here

The difference is that the
while loop repeats so
long as the condition is

True

Control flow: the steps our program takes

While front_is_clear():
sick code here

more sick code here

We only move on when
the condition evaluates

to False

Control flow: the steps our program takes

for i in range(42):
sick code here

Control flow: the steps our program takes

for i in range(42):
sick code here

A for loop goes through
each of the elements of

some collection of things

Control flow: the steps our program takes

for i in range(42):
sick code here

The range function gives us an
ordered collection of all the

non-negative integers below a
particular number

Control flow: the steps our program takes

for i in range(42):
sick code here

“Go through all the numbers until
42, one by one”

Control flow: the steps our program takes

for pixel in image:
sick code here

“Go through all the pixels in
image, one by one”

Control flow: the steps our program takes

for pixel in image:
sick code here

more sick code here

The for loop ends when we’ve
gone through all the things in the

collection

Other useful things to know about control flow

range(42) - all the numbers between 0 (inclusive) and 42 (exclusive)

range(10, 42) - all the numbers between 10 (inclusive) and 42 (exclusive)

range(10, 42, 2) - all the numbers between 10 (inclusive) and 42 (exclusive),
 going up by 2 each time

range(42, 10, -2) - all the numbers between 42 (inclusive) and 10
(exclusive), going down by 2 each time.

Printing vs Returning

Programs have a information flow, and a text output area, and those are separate.
- When a function returns something, that’s information flowing out of the

function to another function
- When a function prints something, that’s information being displayed on the

text output area (which is usually the terminal)

A useful metaphor is viewing a function as a painter inside a room
- Returning is like the painter leaving the room and telling you something
- Printing is like the painter hanging a painting inside the room
- The painter can do either of those things without affecting whether they do the

other thing

Printing is sometimes described as a side effect, since it doesn’t directly influence
the flow of information in a program

Top Down Decomposition

● When faced with a new problem, we want to think about our large, overall
problem by breaking it down into smaller and smaller problems
○ Think about the milestones in the assignments!

● Think about making a cake: while the overall outcome is one, cohesive
structure, there were various individual steps along the way
○ The icing and the batter are made separately with their own unique

components and sub-steps (mixing in various ingredients at various
times.)

○ When we code, we can see the end goal (red velvet cake!) but need to
break down the problem into smaller, manageable subproblems.

Top Down Decomposition

Think about our Ghost assignment....

Top Down Decomposition

Think about our Ghost assignment....

Big goal: Create a new, unobstructed image

Top Down Decomposition

Think about our Ghost assignment....

Big goal: Create a new, unobstructed image

Smaller goal: Find the ‘best’ pixel at a given (x, y)

Top Down Decomposition

Think about our Ghost assignment....

Big goal: Create a new, unobstructed image

Smaller goal: Find the ‘best’ pixel at a given (x, y)

Smallest goal: Find the
distance from a pixel to the
average pixel at that (x, y)

Top Down Decomposition

Think about our Ghost assignment....

Big goal: Create a new, unobstructed image

Smaller goal: Find the ‘best’ pixel at a given (x, y)

Smallest goal: Find the
distance from a pixel to the
average pixel at that (x, y)

TOP

Incremental Testing

● Before moving on from one function to the next, you want
to thoroughly test it

● This way, we can easily identify and eliminate any bugs
caused by this function before using it in another
function

● Python has a ~cool~ way to test individual functions
called: doctests

doctests

doctests
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

doctests
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

This is a doctest

doctests
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

doctests help you test an
individual function by
running it on certain
arguments that you provide
and checking the return
value.

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Three right arrows
followed by a space

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Name of the function

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Real arguments you
want to use to test
your function

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

The return value you
expect for those
arguments.

Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

When you run this
doctest, it will check if
your program returns 5
when passed in 8, 7, and
21.

You can have multiple doctests for a single function
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value
of a,b,c and the smallest value of a,b,c.
>>> average_minus_smallest(8,7,21)
5
>>> average_minus_smallest(0,0,0)
0
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Use multiple doctests
when there are multiple
cases that you want to
check.

Tying it all together...

Tying it all together...

● Use top down decomposition to break your program into
smaller problems

Tying it all together...

● Use top down decomposition to break your program into
smaller problems

● Write a function for each problem

Tying it all together...

● Use top down decomposition to break your program into
smaller problems

● Write a function for each problem
● Incrementally test as you write each function

○ AKA use doctests to ensure each function is bug-free before moving on
to the next

Tying it all together...

● Use top down decomposition to break your program into
smaller problems

● Write a function for each problem
● Incrementally test as you write each function

○ AKA use doctests to ensure each function is bug-free before moving on
to the next

● Build your entire program

Tying it all together...

● Use top down decomposition to break your program into
smaller problems

● Write a function for each problem
● Incrementally test as you write each function

○ AKA use doctests to ensure each function is bug-free before moving on
to the next

● Build your entire program

● Become python master 🐍

What questions do you have?

Practice Problem: GCD

Greatest Common Divisor

Greatest Common Divisor

● Write a program that helps a user find the greatest
common divisor of 3 numbers

Greatest Common Divisor

● Write a program that helps a user find the greatest
common divisor of 3 numbers

● GCD is the largest positive integer that divides each of
the integers given

Greatest Common Divisor

● Write a program that helps a user find the greatest
common divisor of 3 numbers

● GCD is the largest positive integer that divides each of
the integers given

● Your program should use helper functions to break this
challenging task into smaller subproblems

Greatest Common Divisor - Our Key Insights

Greatest Common Divisor - Our Key Insights

● Breaking the problem down into smaller problems

Greatest Common Divisor - Our Key Insights

● Breaking the problem down into smaller problems
○ Asking the user for 3 numbers
○ Compute the greatest common divisor
○ Repeat these two tasks until the user enters SENTINEL value

Greatest Common Divisor - Our Key Insights

● Breaking the problem down into smaller problems
○ Asking the user for 3 numbers
○ Compute the greatest common divisor
○ Repeat these two tasks until the user enters SENTINEL value

● Break the program into functions

Greatest Common Divisor - Our Key Insights

● Breaking the problem down into smaller problems
○ Asking the user for 3 numbers
○ Compute the greatest common divisor
○ Repeat these two tasks until the user enters SENTINEL value

● Break the program into functions
○ get_user_input()

■ Asks users for 3 numbers and returns them
○ compute_gcd(a, b, c)

■ Input = 3 integers
■ Returns = the GCD of the 3 integers

○ main()
■ Repeat those two steps while the user’s input != the SENTINEL

value

