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Todays ~Flow~

● if, if/else, and if/elif/else
● while loops 
● for loop variations
● range function 
● printing vs. returning
● Top Down Decomposition
● Incremental Testing 

○ Doctests
● Answer any of your questions 
●  Practice Problem





Control Flow Review

Thanks to Brahm Capoor for these awesome slides



Control flow: the steps our program takes
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if front_is_clear():
# sick code here

An if statement will only 
execute if the condition 

evaluates to True 
if front_is_clear == TRUE
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If the condition is True, the 
code inside the if statement will 

happen exactly once



Control flow: the steps our program takes

if front_is_clear():
# sick code here

# more sick code here

Once the code inside the if 
statement has completed, the 
program moves on, even if the 

condition is still True
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Control flow: the steps our program takes

if front_is_clear():
# sick code here

elif beepers_present(): 
# other sick code here

elif beepers_not_present():
# even more sick code here

Important Note: If you 
only use if/elifs, make 
sure you consider all 
cases. 



Control flow: the steps our program takes

while front_is_clear():
# sick code here



Control flow: the steps our program takes

while front_is_clear():
# sick code here

while loops also require 
a condition, which 

behaves in exactly the 
same way



Control flow: the steps our program takes

while front_is_clear():
# sick code here

The difference is that the 
while loop repeats so 
long as the condition is 

True



Control flow: the steps our program takes

While front_is_clear():
# sick code here

# more sick code here

We only move on when 
the condition evaluates 

to False



Control flow: the steps our program takes

for i in range(42):
# sick code here



Control flow: the steps our program takes

for i in range(42):
# sick code here

A for loop goes through 
each of the elements of 

some collection of things



Control flow: the steps our program takes

for i in range(42):
# sick code here

The range function gives us an 
ordered collection of all the 

non-negative integers below a 
particular number



Control flow: the steps our program takes

for i in range(42):
# sick code here

“Go through all the numbers until 
42, one by one”



Control flow: the steps our program takes

for pixel in image:
# sick code here

“Go through all the pixels in 
image, one by one”



Control flow: the steps our program takes

for pixel in image:
# sick code here

# more sick code here

The for loop ends when we’ve 
gone through all the things in the 

collection



Other useful things to know about control flow

range(42) - all the numbers between 0 (inclusive) and 42 (exclusive)

range(10, 42) - all the numbers between 10 (inclusive) and 42 (exclusive)

range(10, 42, 2) - all the numbers between 10 (inclusive) and 42 (exclusive),
                                   going up by 2 each time

range(42, 10, -2) - all the numbers between 42 (inclusive) and 10
(exclusive), going down by 2 each time.



Printing vs Returning

Programs have a information flow, and a text output area, and those are separate.
- When a function returns something, that’s information flowing out of the 

function to another function
- When a function prints something, that’s information being displayed on the 

text output area (which is usually the terminal)

A useful metaphor is viewing a function as a painter inside a room
- Returning is like the painter leaving the room and telling you something
- Printing is like the painter hanging a painting inside the room
- The painter can do either of those things without affecting whether they do the 

other thing

Printing is sometimes described as a side effect, since it doesn’t directly influence 
the flow of information in a program



Top Down Decomposition 

● When faced with a new problem, we want to think about our large, overall 
problem by breaking it down into smaller and smaller problems
○ Think about the milestones in the assignments!

● Think about making a cake: while the overall outcome is one, cohesive 
structure, there were various individual steps along the way
○ The icing and the batter are made separately with their own unique 

components and sub-steps (mixing in various ingredients at various 
times.) 

○ When we code, we can see the end goal (red velvet cake!) but need to 
break down the problem into smaller, manageable subproblems.
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Top Down Decomposition 

Think about our Ghost assignment....

Big goal: Create a new, unobstructed image

Smaller goal: Find the ‘best’ pixel at a given (x, y)

Smallest goal: Find the 
distance from a pixel to the 
average pixel at that (x, y)

TOP



Incremental Testing

● Before moving on from one function to the next, you want 
to thoroughly test it

● This way, we can easily identify and eliminate any bugs 
caused by this function before using it in another 
function

● Python has a ~cool~ way to test individual functions 
called: doctests 



doctests



doctests
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest
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This is a doctest 



doctests
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

doctests help you test an 
individual function by 
running it on certain 
arguments that you provide 
and checking the return 
value. 



Composition of a doctest
def average_minus_smallest(a,b,c):
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Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Three right arrows 
followed by a space



Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Name of the function



Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Real arguments you 
want to use to test 
your function



Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

The return value you 
expect for those 
arguments. 



Composition of a doctest
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

When you run this 
doctest, it will check if 
your program returns 5 
when passed in 8, 7, and 
21. 



You can have multiple doctests for a single function 
def average_minus_smallest(a,b,c):

“““ This function returns the difference btw the average value 
of a,b,c and the smallest value of a,b,c. 
>>> average_minus_smallest(8,7,21)
5
>>> average_minus_smallest(0,0,0)
0
”””
avg = (a+b+3)/3
smallest = helper_func_for_min(a,b,c)
return avg-smallest

Use multiple doctests 
when there are multiple 
cases that you want to 
check. 
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Tying it all together...

● Use top down decomposition to break your program into 
smaller problems

● Write a function for each problem
● Incrementally test as you write each function 

○ AKA use doctests to ensure each function is bug-free before moving on 
to the next 

● Build your entire program 

● Become python master  🐍



What questions do you have?



Practice Problem: GCD



Greatest Common Divisor
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Greatest Common Divisor

● Write a program that helps a user find the greatest 
common divisor of 3 numbers

● GCD is the largest positive integer that divides each of 
the integers given

● Your program should use helper functions to break this 
challenging task into smaller subproblems 
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Greatest Common Divisor - Our Key Insights

● Breaking the problem down into smaller problems 
○ Asking the user for 3 numbers 
○ Compute the greatest common divisor
○ Repeat these two tasks until the user enters SENTINEL value

● Break the program into functions 
○ get_user_input()

■ Asks users for 3 numbers and returns them 
○ compute_gcd(a, b, c)

■ Input = 3 integers 
■ Returns = the GCD of the 3 integers 

○ main()
■ Repeat those two steps while the user’s input != the SENTINEL 

value




