
Decomposition
Chris Gregg

CS106A, Stanford University

Today’s Goal:
• Be able to approach a problem “top down” by using decomposition (also

known as top down refinement)

Today’s Plan:
• Decomposition
• double_beepers()
• Infinite loops (oops!)
• roomba_karel()

Quick Review
• Karel the Robot:

• Functions:
def main():

goToMoon()

def go_to_moon():
build_spaceship() # a few more steps

def build_spaceship():
todo
put_beeper()

Quick Review
• For loops:
def main():

repeats the body 99 times
for i in range(99):

the “body”
put_beeper()

• While loops:
def main():

while condition holds runs body
checks condition after body completes
while front_is_clear():

move()

Quick Review
• If statement:
def main():

If the condition holds, runs body
if front_is_clear():

move()

• If / Else statement:
def main():

If the condition holds,
if beepers_present():

do this
pick_beeper()

else :
otherwise, do this
put_beeper()

Karel Reference

What is Beethoven doing now?
Decomposing.

• In programming, decomposition is the art of breaking a problem down into
manageable parts that are clear, understandable, and easy to debug and
maintain. Another term for decomposition is factoring.
• Instead of a big, monolithic program, a well-decomposed program has small

functions and easily understood parts.
• Each function should have one purpose, or be made up of smaller functions that each

have a single purpose

• Each function within a larger function should be able to stand on its own
• This makes debugging easier, and it means that we can debug functions separately

Example: What is your morning routine?

More Karel: double_beepers()

http://web.stanford.edu/class/cs106a/apps/
karelide/#/double

How can we go from
Before to After with
Karel?

This is not trivial!

Our algorithm must
work for any number
of starting beepers!

http://web.stanford.edu/class/cs106a/apps/karelide/

What does this program do? from karel.stanfordkarel import *

def main():
move()
while beepers_present():

pick_beeper()
move()
put_beeper()
put_beeper()
turn_around()
move()
turn_around()

move()
while beepers_present():

pick_beeper()
turn_around()
move()
turn_around()
put_beeper()
move()

turn_around()
move()
turn_around()
turn_around()
move()
turn_around()

def turn_around():
turn_left()
turn_left()

if __name__ == "__main__":
run_karel_program()

Full double_beepers() program (next
slide has utility functions):
from karel.stanfordkarel import *

File: double.py

Practice decomposition and stepwise
refinement
def main():

"""
Big idea: make a pile with double beepers next to the first pile
and then move that pile back to the original beepers location
"""
move()
step 1: Make a double pile next to the first
make_double_pile_nextdoor()

step 2: Move the pile back to the original location
move_pile_backwards()

OBO: move karel back one spot
move_backwards()

pre-condition: Karel is on top of a pile of beepers
post-condition: Karel is in front of a pile of
beepers with twice the
original amount that is next to the
original spot.
No more beepers are on the original
location
def make_double_pile_nextdoor():

while beepers_present():
pick_beeper()
move()
put_beeper()
put_beeper()
move_backwards()

pre-condition: Karel is in front of a pile of
beepers
post-condition: Karel has moved the pile backwards
and is
on top of it
def move_pile_backwards():

move()
while beepers_present():

pick_beeper()
move_backwards()
put_beeper()
move()

move_backwards()

Full double_beepers() program (next
slide has utility functions):

Utility functions

a classic...
def move_backwards():

turn_around()
move()
turn_around()

another classic...
def turn_around():

turn_left()
turn_left()

rememeber lecture 1? fond memories...
def turn_right():

for i in range(3):
turn_left()

What does this program do? from karel.stanfordkarel import *

def main():
move()
while beepers_present():

pick_beeper()
move()
put_beeper()
put_beeper()
turn_around()
move()
turn_around()

move()
while beepers_present():

pick_beeper()
turn_around()
move()
turn_around()
put_beeper()
move()

turn_around()
move()
turn_around()
turn_around()
move()
turn_around()

def turn_around():
turn_left()
turn_left()

if __name__ == "__main__":
run_karel_program()

This is DoubleBeepers!
• It’s harder to understand

because it hasn’t been
decomposed.

• It would be infinitely easier to
modify the DoubleBeepers we
worked on instead of this one,
because the decomposed
version is that much more
clear.

Pro Tips
• A good function should do “one conceptual thing.”
• All functions and variables should be descriptive enough so that

someone reading your code can have a good idea about what it
does simply from the name.

• Good functions should be less than ten lines and no more than
three levels of indentation.

• Functions should be reusable (within reason) and easy to modify.
• Functions should be well commented, but not over-commented.

There are two types of programs:
One is so complex that there is nothing obvious wrong with it.
One is so clear that there is obviously nothing wrong with it.

Infinite loops (oops!)
Why did the computer scientist die in the shower?
The bottle of shampoo said, Lather, rinse, repeat.

def turn_to_wall():
while left_is_clear():

turn_left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)
Why did the computer scientist die in the shower?
The bottle of shampoo said, Lather, rinse, repeat.

def turn_to_wall():
while left_is_clear():

turn_left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)
Why did the computer scientist die in the shower?
The bottle of shampoo said, Lather, rinse, repeat.

def turn_to_wall():
while left_is_clear():

turn_left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)
Why did the computer scientist die in the shower?
The bottle of shampoo said, Lather, rinse, repeat.

def turn_to_wall():
while left_is_clear():

turn_left()

What happens in the program
when Karel is in this state?

roomba_karel
• Write a Roomba Karel that sweeps the entire

world of all beepers.
• Karel starts at (1,1) facing East.
• The world is rectangular, and some squares

contain beepers.
• There are no interior walls.
• When the program is done, the world

should contain 0 beepers.
• Karel's ending location does not matter.

• How should we approach this tricky problem?

roomba_karel
Possible algorithm 1

roomba_karel
Possible algorithm 2

roomba_karel
Possible algorithm 3

roomba_karel
Possible algorithm 4

roomba_karel

