yo—
— -

o
Decompositio

Chris Gregg
CS106A, Stanford University

n

oday’s Goal:

* Be able to approach a problem “top down” by using decomposition (also
known as top down refinement)

Today’s Plan:

* Decomposition

* double beepers|()

* Infinite loops (oops!)
* roomba karel()

Quick Review
e Karel the Robot:

~

* Functions:

def main(FRﬂhOﬂ
goToMoon() 7

def go to moon():
build spaceship() # a few more steps

def build spaceship():
todo
put beeper()

Quick Review

* For loops:
def main():
repeats the body 99 times
for 1 in range(99):
the “body”
put beeper /()

* While loops:
def main():

while condition holds runs body
checks condition after body completes

while front is clear():
move ()

Quick Review

* |f statement:
def main():
If the condition holds,
if front is clear():
move ()

* |If / Else statement:
def main():
If the condition holds,
if beepers present():
do this
pick beeper|()

else : . .
otherwise, do this

put beeper()

runs body

Karel Reference

Base Karel commnds:

move()
turn_left(Q)
put_beeper()
pick_beeper()

Karel program structures:

Comments can be included in any part
of a program. They start with a
and include the rest of the line.

def main() :
code to execute

declarations of other functions

Conditions:
i1f condition:
code run if condition passes

if condition:

code block for "yes"
else:

code block for "no"

Names of the conditions:

front_is_clear() front_is_blocked()
beepers_present() no_beepers_present()
beepers_in_bag() no_beepers_in_bag()
left_is_clear() left_is_blocked()
right_is_clear() right_is_blocked()
facing_north() not_facing_north()
facing_south() not_facing_south()
facing_east() not_facing_east()

facing_west() not_facing_west()

Loops:
for 1 in range(count):

code to repeat

while condition:
code to repeat

Function Declaration:

def name():
code in the body of the function.

Extra Karel Commands:

paint_corner(COLOR_NAME)
corner_color_is(COLOR_NAME)

What is Beethoven doing now?

Decomposing.

* In programming, decomposition is the art of breaking a problem down into
manageable parts that are clear, understandable, and easy to debug and
maintain. Another term for decomposition is factoring.

* Instead of a big, monolithic program, a well-decomposed program has small
functions and easily understood parts.

* Each function should have one purpose, or be made up of smaller functions that each
have a single purpose

e Each function within a larger function should be able to stand on its own
* This makes debugging easier, and it means that we can debug functions separately

Example: What is your morning routine?

More Karel: double beepers()
Before After

3 + + + + 3 + + + +

2

48 - -
K 7 3 1 2 3

Our algorithm must
work for any number
of starting beepers!

How can we go from
Before to After with
Karel?

http://web.stanford.edu/class/cs106a/apps/
karelide/#/double

Muhammed ibn

. i
This is not trivial! Muca Al Kwariorm

http://web.stanford.edu/class/cs106a/apps/karelide/

What does this program do?

from karel.stanfordkarel import *

def main():

move()

while beepers present():
pick_beeper()
move()
put beeper()
put beeper()
turn_around()
move()
turn_around()

move()

while beepers present():
pick_beeper()
turn_around()
move()
turn_around()
put beeper()
move()

turn_around()
move()
turn_around()
turn_around()
move()
turn_around()

def turn around():
turn left ()
turn left ()

if name == " main_ ":
run_karel program()

Full double beepers () program (next
slide has utility functions):

from karel.stanfordkarel import =*
pre-condition: Karel is on top of a pile of beepers

File: double.py # post-condition: Karel is in front of a pile of
#omm e - beepers with twice the
Practice decomposition and stepwise # original amount that is next to the
refinement original spot.
def main(): # No more beepers are on the original
e location
Big idea: make a pile with double beepers next to the first pile def make double pile nextdoor():
and then move that pile back to the original beepers location while beepers present():
e pick beeper()
move () move()
step 1l: Make a double pile next to the first put beeper ()
make double pile nextdoor() put beeper()

move_ backwards()
step 2: Move the pile back to the original location

move pile backwards() # pre-condition: Karel is in front of a pile of
beepers
OBO: move karel back one spot # post-condition: Karel has moved the pile backwards
move_ backwards () and is
on top of it
def move pile backwards():
move ()

while beepers present():
pick beeper()
move_ backwards()
put beeper()
move()
move_ backwards ()

Full double beepers () program (next
slide has utility functions):

a classic...

def move backwards():
turn_around()
move ()
turn_around()

another classic...
def turn around():
turn left()
turn left()

rememeber lecture 1? fond memories...
def turn right():
for i in range(3):
turn left()

What does this program do?

This is DoubleBeepers!

It’s harder to understand
because it hasn’t been
decomposed.

't would be infinitely easier to
modity the DoubleBeepers we
worked on instead of this one,
because the decomposed
version is that much more
clear.

from karel.stanfordkarel import *

def main():

move()

while beepers present():
pick beeper()
move()
put beeper()
put beeper()
turn_around()
move()
turn_around()

move()

while beepers present():
pick beeper()
turn_around()
move()
turn_around()
put beeper()
move()

turn_around()
move()
turn_around()
turn_around()
move()
turn_around()

def turn around():
turn left ()
turn left ()

if name == " main_ ":
run_karel program()

Pro Tips

A good function should do “one conceptual thing.”

All functions and variables should be descriptive enough so that
someone reading your code can have a good idea about what it
does simply from the name.

Good functions should be less than ten lines and no more than
three levels of indentation.

Functions should be reusable (within reason) and easy to modify.
Functions should be well commented, but not over-commented.

There are two types of programs:

One is so complex that there is nothing obvious wrong with it.
One is so clear that there is obviously nothing wrong with it.

Infinite loops (oops!)

Why did the computer scientist die in the shower?

The bottle of shampoo said, Lather, rinse, repeat.

def turn to wall():
while left is clear():
turn left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)

Why did the computer scientist die in the shower?

The bottle of shampoo said, Lather, rinse, repeat.

def turn to wall():
while left is clear():
turn left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)

Why did the computer scientist die in the shower?

The bottle of shampoo said, Lather, rinse, repeat.

def turn to wall():
while left is clear():
turn left()

What happens in the program
when Karel is in this state?

Infinite loops (oops!)

Why did the computer scientist die in the shower?
The bottle of shampoo said, Lather, rinse, repeat.

def turn to wall():
while left is clear(): +
turn left()

What happens in the program
when Karel is in this state?

roomba karel

* Write a Roomba Karel that sweeps the entire
world of all beepers.
e Karel starts at (1,1) facing East. 7
 The world is rectangular, and some squares
contain beepers.
 There are no interior walls. 5
* When the program is done, the world
should contain O beepers.
* Karel's ending location does not matter. 3
e How should we approach this tricky problem?

roomba karel

Possible algorithm 1 8

roomba karel

Possible algorithm 2

roomba karel

Possible algorithm 3 - "’i i"

el B el
N I R I Y

—

it i

NN Wk OO N

1 2 3 4 5 6 7 8

roomba karel

Possible algorithm 4 s

roomba karel

Run Program

Load World

Slow Fast

RoombaKarel

=
&

+

Welcome to Karel!

o
o
o
o
o

OO
7 8

