Expressions

Chris Gregg
Based on slides by Chris Piech and Mehran
Sahami
CS106A, Stanford University

Recall, add2numbers.py Program

def main():
print("This program adds two numbers.")
numl = input("Enter first number: ")
numl = int(numl)
num2 = input("Enter second number: ™)
num2 = int(num2)
total = numl + num2
print(f"The total is {total}.")

Recall, add2numbers.py Program

def main():
print("This program adds two numbers.")
numl = int(input("Enter first number: "))

num2 = input("Enter second number: ™)
num2 = int(num2)

total = numl + num2

print(f"The total is {total}.")

Recall, add2numbers.py Program

def main():

print("This program adds two numbers.")
numl = int(input("Enter first number: ™))

num2 = int(input("Enter second number: "))

total = numl + num2
print(f"The total is {total}.")

Recall, add2numbers.py Program

def main():

print("This program adds two numbers.")
numl = int(input("Enter first number: ™))

num2 = int(input("Enter second number: "))
total = numl + num2

print(f"The total is {total}.")

e Often, this is how you'll see code that gets input
e But, what if | want to do more than add?

* It's time for the world of expressions

Today’s Goal

1. Understanding arithmetic expressions
2. Using constants
3. Random number generation

Arithmetic Operators

numl = 5
num2 = 2

e QOperations on numerical types (int and float)

* Operators num3
+ "addition" Ex.: num3=numl + num2 7
- "subtraction" Ex.. num3 =numl - num2 3
* "multiplication” Ex.. num3 =numl * num2 10
/ "division" Ex.: num3=numl / num2 2.5
// 'integer division" Ex.: num3=numl // num2 2
% "remainder" Ex.: num3=numl % num2 1

** '"exponentiation" Ex.: num3 =numl ** num2
- "negation" (unary) Ex.: num3 = -numl

Precedence

* Precedence of operator (in order)
() "parentheses" highest
** "exponentiation"
- "negation" (unary)

o Iy 1/, %

*
+, - lowest

* Operators in same precedence category are
evaluated left to right
— Similar to rules of evaluating expressions in algebra

Precedence Example

x =1+ 3 5 / 2

15
\

Implicit Type Conversion

numl =
num2 =
num3 =

R N Ul

.9

Operations on two ints (except /) that would result in an
integer value are of type int
numl + 7 = 12 (int)
— Dividing (/) two ints results in a £loat, even if result is a
round number (Ex.: 6 / 2 =3.0)

If either (or both) of operands are £1loat, the result is a
float

num3 + 1 = 2.9 (float)
Exponentiation depends on the result:
num2 ** 3 = 8 (int)

2 *x -] = 0.5 (float)

Explicit Type Conversion

numl =
num2 =
num3 =

R N Ul

.9

* Use float (value) to create new real-valued number

float (numl) = 5.0 (float)

— Note that numl is not changed. We created a new value.
numl + float(num2) = 7.0 (float)
numl + num2 = 7 (int)

* Use int (value) to create a new integer-valued
number (truncating anything after decimal)
int (num3) =1 (int)
int(-2.7) = =2 (int)

Float is Not Always Exact

numl =
num2 =
num3 =

R N Ul

.9

e What is type of: num3 - 1
— Answer: float

e What is value of: num3 - 1

— Answer: 0.8999999999999999
— WHAT?!

Expression Shorthands

numl = 5

num2 = 2

num3 = 1.9

numl = numl + 1 sameas numl 4= 1

num2 = num2 - 4 sameas num2 -= 4

num3 = num3 * 2 sameas num3 *= 2

numl = numl / 2 sameas numl /= 2
* Generally:

variable = variable operator (expression)
IS same as:
variable operator= expression

Let's consider an example
average2numbers.py

average2numbers.py

mnmimn

File: average2numbers.py
This program askRs the user for two numbers
and prints their average.

mnmimn

def main():
print("This program averages two numbers.™)
numl = float(input("Enter first number: "))
num2 = float(input("Enter second number: "))
total = (numl + num2) / 2
print(f"The average is {total}.")

This provided Line 1s required at the end of a
Python file to call the main() function.
if name_ == '_ main__':

main()

Constants

INCHES IN _FOOT = 12
PI = 3.1415

e Constants make code easier to read (good style):
area = PI * (radius ** 2)
— Written in all capital SNAKE_CASE with descriptive names

— Constant are really variables that represent quantities that
don’t change while the program is running

— Can be changed between runs (as necessary)
 "Hey we need to compute a trajectory to get us to Mars"

PI = 3.141592653589793

— Code should be written with constants in a general way
so that it still works when constants are changed

https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/

Example of Using Constants

mnimn

File: constants.py

An example program with constants

mnimn

INCHES_IN FOOT = 12

def main():
feet = float(input("Enter number of feet: "))
inches = feet * INCHES IN FOOT
print(f"That is {inches} inches")

This provided Line 1s required at the end of a Python file
to call the main() function.

if name_ == '_main__':
main()

Python math Library

import math

* math library has many built-in constants:
math.pi mathematical constant &
math.e mathematical constant e

 and useful functions:

math.sgrt(x) returns square root of x
math.exp(x) returns e*
math.log(x) returns natural log (base e) of x

* These are just a few examples of what's in math

The Python REPL

 The Python Read Evaluate Print Loop (REPL) is an easy
way to quickly test things in Python, and it enables you
to find out what functions exist in libraries (and get
help on them)

* In the terminal, simply type python3:

Terminal: Local + O —

neutrinomacbook:~ tofer $ python3

Python 3.8.3 (v3.8.3:6f8c8320€9, May 13 2020, 16:29:34)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

* Now, you can type python expressions, and even write
some code (but it is always much better to write
programs in PyCharm itself)

The Python REPL

* REPL example:

neutrinomacbook:~ tofer $ python3

Python 3.8.3 (v3.8.3:6f8c8320e9, May 13 2020, 16:29:34)
[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> a = "hello"

>>> print(f"{a}, world!")

hello, world!

>>> numl = 5

>>> num2 = 4.3

>>> print(numl - num2)

0.7000000000000002

>>>

The Python REPL

* If youimport a library, you can use
dir(library name) to find out all the functions
and constants the library has:

>>> import math
>>> dir(math)

['_doc__"', '__file__', '__loader__"', '_name__', '__package__', '__spec__', 'acos', 'acosh', 'asi
n', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist
', 'e', 'erf', 'erfc', 'exp', 'expml', 'fabs', 'factorial’', 'floor', 'fmod', 'frexp', 'fsum', 'gam
ma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'ldexp', 'lgamma‘, '
log', 'loglo', 'loglp', 'log2', 'modf', 'nan', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder’
, 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

>>>

The Python REPL

* If you want help on a particular function, type
help(library name.function name)

>>> help(math. log)

Help on built-in function log in module math:

log(...)
log(x, [base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.
(END)

* Type the g key to get out of the help window

Example of Using math Library

mnin

This program computes square roots

mnin

import math

def main():
num = float(input("Enter number: "))
root = math.sqrt(num)
print(f"Square root of {num} is {root}")

This provided Line 1s required at the end of a Python file
to call the main() function.

if name_ == "'_main__':
main()

Random Number Generation

* Want a way to generate random number
— Say, for games or other applications

 No "true" randomness in computer, so we have
pseudorandom numbers

— "That looks pretty random to me"

« Want "black box" that we can ask for random numbers

Next random number?

Random Number

3 Generator

 Can "seed" the random number generator to always
produce the same sequence of "random"” numbers ==

Python random Library

‘ import random

Function What it does

random.randint(min, max)

Returns a random integer
between min and max, inclusive.

random.random()

Returns a random real number
(float) between 0 and 1.

random.uniform(min, max)

Returns a random real number
(float) between min and max.

random.seed(x)

Sets "seed" of random number
generator to x.

Let's consider an example
rolldice.py

Example of Using random Library

mnmimn

Simulate rolling two dice

mnmimn

import random
NUM_SIDES = 6

def main():
setting seed 1s useful for debugging
random.seed(1)
diel = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = diel + die2
print(f"Dice have {NUM_SIDES} sides each.™)
print(f"First die: {diel}")

print(f"Second die: {die2}")
print(f"Total of two dice: {total}")

Today’s Goal

1. Understanding arithmetic expressions
2. Using constants
3. Random number generation

Putting 1t all together:
dicesimulator.py

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
roll dice()

roll dice()
print(f"diel in main() is: {diel}")

What's Going On?

def main():
[diel = 10 |
print(f"diel in main() starts as: {diel}")
roll dice()
roll dice()

roll dice()
print(f"diel in main() is: {diel}")

What's Going On?

def main():
diel = 10
[print(f"diel in main() starts as: {die1l}")
roll dice()
roll dice()

roll dice()
print(f"diel in main() is: {diel}")

diel in main() starts as: 10

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
[roll_dice()]
roll dice()

roll dice()
print(f"diel in main() is: {diel}")

diel in main() starts as: 10

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)

die2 = random.randint(1, NUM_SIDES)
total = diel + die2

print(f"Total of two dice: {total}")
s [] wa[]]

diel in main() starts as: 10

What's Going On?

def roll dice():
[die1 = random.randint(1, NUM_SIDES) |

die2 = random.randint(1, NUM_SIDES)
total = diel + die2

print(f"Total of two dice: {total}")
wa[7] wa[] wa]

diel in main() starts as: 10

What's Going On?

def roll dice():
diel = random.randint(l, NUM SIDES)

|die2 = random.randint(1, NUM_SIDES) |
total = diel + die2

print(f"Total of two dice: {total}")
wa[7] wa[5] wal]

diel in main() starts as: 10

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
[total = diel + die2 |

print(f"Total of two dice: {total}")

diel in main() starts as: 10

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = diel + die2

[print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
[roll_dice()]
roll dice()

roll dice()
print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
[roll_dice()]

roll dice()
print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)

die2 = random.randint(1, NUM_SIDES)
total = diel + die2

print(f"Total of two dice: {total}")

s [] wa[] e[

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def roll dice():
[die1 = random.randint(1, NUM_SIDES) |

die2 = random.randint(1, NUM_SIDES)
total = diel + die2

print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def roll dice():
diel = random.randint(l, NUM SIDES)

|die2 = random.randint(1, NUM_SIDES) |

total = diel + die2
print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
[total = diel + die2 |

print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7

What's Going On?

def roll dice():
diel = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = diel + die2

[print(f"Total of two dice: {total}")

diel in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
[roll_dice()]

roll dice()
print(f"diel in main() is: {diel}")

diel in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
roll dice()
[roll_dice()]
print(f"diel in main() is: {diel}")

diel in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
roll dice()
[roll_dice()]
print(f"diel in main() is: {diel}")

diel in main() starts as: 10
Total of two dice: 7
Total of two dice: 4
Total of two dice: 5

What's Going On?

def main():
diel = 10
print(f"diel in main() starts as: {diel}")
roll dice()
roll dice()

roll dice()
[print(f"diel in main() is: {diel}")

diel in main() starts as: 10
Total of two dice: 7

Total of two dice: 4

Total of two dice: 5

diel in main() is: 10

You're rockin' it!

