
Expressions
Chris Gregg

Based on slides by Chris Piech and Mehran
Sahami

CS106A, Stanford University

Recall, add2numbers.py Program
def main():

print("This program adds two numbers.")
num1 = input("Enter first number: ")
num1 = int(num1)
num2 = input("Enter second number: ")
num2 = int(num2)
total = num1 + num2
print(f"The total is {total}.")

Recall, add2numbers.py Program
def main():

print("This program adds two numbers.")
num1 = int(input("Enter first number: "))

num2 = input("Enter second number: ")
num2 = int(num2)
total = num1 + num2
print(f"The total is {total}.")

Recall, add2numbers.py Program
def main():

print("This program adds two numbers.")
num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

total = num1 + num2
print(f"The total is {total}.")

Recall, add2numbers.py Program
def main():

print("This program adds two numbers.")
num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
total = num1 + num2
print(f"The total is {total}.")

• Often, this is how you'll see code that gets input
• But, what if I want to do more than add?
• It's time for the world of expressions

Today’s Goal

1. Understanding arithmetic expressions
2. Using constants

3. Random number generation

Arithmetic Operators
num1 = 5
num2 = 2

• Operations on numerical types (int and float)
• Operators

+ "addition" Ex.: num3 = num1 + num2
- "subtraction" Ex.: num3 = num1 - num2
* "multiplication" Ex.: num3 = num1 * num2
/ "division" Ex.: num3 = num1 / num2
// "integer division" Ex.: num3 = num1 // num2
% "remainder" Ex.: num3 = num1 % num2
** "exponentiation" Ex.: num3 = num1 ** num2
- "negation" (unary) Ex.: num3 = -num1

num3
7
3
10
2.5
2
1
25
-5

Precedence

• Precedence of operator (in order)
() "parentheses" highest
** "exponentiation"
- "negation" (unary)
*, /, //, %
+, - lowest

• Operators in same precedence category are
evaluated left to right
– Similar to rules of evaluating expressions in algebra

Precedence Example

x = 1 + 3 * 5 / 2

15

7.5

8.5

8.5x

Implicit Type Conversion

• Operations on two ints (except /) that would result in an
integer value are of type int

num1 + 7 = 12 (int)
– Dividing (/) two ints results in a float, even if result is a

round number (Ex.: 6 / 2 = 3.0)
• If either (or both) of operands are float, the result is a
float

num3 + 1 = 2.9 (float)

• Exponentiation depends on the result:
num2 ** 3 = 8 (int)
2 ** -1 = 0.5 (float)

num1 = 5
num2 = 2
num3 = 1.9

Explicit Type Conversion

• Use float(value) to create new real-valued number
float(num1) = 5.0 (float)

– Note that num1 is not changed. We created a new value.
num1 + float(num2) = 7.0 (float)
num1 + num2 = 7 (int)

• Use int(value) to create a new integer-valued
number (truncating anything after decimal)

int(num3) = 1 (int)
int(-2.7) = -2 (int)

num1 = 5
num2 = 2
num3 = 1.9

Float is Not Always Exact

• What is type of: num3 - 1
– Answer: float

• What is value of: num3 - 1
– Answer: 0.8999999999999999
– WHAT?!

num1 = 5
num2 = 2
num3 = 1.9

Expression Shorthands

num1 = num1 + 1 same as num1 += 1
num2 = num2 - 4 same as num2 -= 4
num3 = num3 * 2 same as num3 *= 2
num1 = num1 / 2 same as num1 /= 2

• Generally:
variable = variable operator (expression)
is same as:
variable operator= expression

num1 = 5
num2 = 2
num3 = 1.9

Let's consider an example
average2numbers.py

average2numbers.py
"""
File: average2numbers.py

This program asks the user for two numbers
and prints their average.
"""

def main():
print("This program averages two numbers.")
num1 = float(input("Enter first number: "))
num2 = float(input("Enter second number: "))
total = (num1 + num2) / 2
print(f"The average is {total}.")

This provided line is required at the end of a
Python file to call the main() function.
if __name__ == '__main__':

main()

Constants

• Constants make code easier to read (good style):
area = PI * (radius ** 2)

– Written in all capital SNAKE_CASE with descriptive names
– Constant are really variables that represent quantities that

don’t change while the program is running
– Can be changed between runs (as necessary)

• "Hey, we need to compute a trajectory to get us to Mars"
PI = 3.141592653589793

– Code should be written with constants in a general way
so that it still works when constants are changed

INCHES_IN_FOOT = 12
PI = 3.1415

https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/

Example of Using Constants
"""
File: constants.py

An example program with constants
"""

INCHES_IN_FOOT = 12

def main():
feet = float(input("Enter number of feet: "))
inches = feet * INCHES_IN_FOOT
print(f"That is {inches} inches")

This provided line is required at the end of a Python file
to call the main() function.
if __name__ == '__main__':

main()

Python math Library

• math library has many built-in constants:
math.pi mathematical constant p
math.e mathematical constant e

• and useful functions:
math.sqrt(x) returns square root of x
math.exp(x) returns ex

math.log(x) returns natural log (base e) of x

• These are just a few examples of what's in math
– We can use the Python REPL to find out all the functions (see next slide)

import math

The Python REPL
• The Python Read Evaluate Print Loop (REPL) is an easy

way to quickly test things in Python, and it enables you
to find out what functions exist in libraries (and get
help on them)

• In the terminal, simply type python3:

• Now, you can type python expressions, and even write
some code (but it is always much better to write
programs in PyCharm itself)

The Python REPL
• REPL example:

The Python REPL
• If you import a library, you can use
dir(library_name) to find out all the functions
and constants the library has:

The Python REPL
• If you want help on a particular function, type
help(library_name.function_name)

• Type the q key to get out of the help window

Example of Using math Library
"""
File: squareroot.py

This program computes square roots
"""

import math

def main():
num = float(input("Enter number: "))
root = math.sqrt(num)
print(f"Square root of {num} is {root}")

This provided line is required at the end of a Python file
to call the main() function.
if __name__ == '__main__':

main()

Random Number Generation

• Want a way to generate random number
– Say, for games or other applications

• No "true" randomness in computer, so we have
pseudorandom numbers
– "That looks pretty random to me"

• Want "black box" that we can ask for random numbers

• Can "seed" the random number generator to always
produce the same sequence of "random" numbers

Random Number
Generator

Next random number?

5

Next random number?

3

Python random Library
import random

Function What it does
random.randint(min, max) Returns a random integer

between min and max, inclusive.
random.random() Returns a random real number

(float) between 0 and 1.
random.uniform(min, max) Returns a random real number

(float) between min and max.

random.seed(x) Sets "seed" of random number
generator to x.

Let's consider an example
rolldice.py

Example of Using random Library
"""
File: rolldice.py

Simulate rolling two dice
"""

import random

NUM_SIDES = 6

def main():
setting seed is useful for debugging
random.seed(1)
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Dice have {NUM_SIDES} sides each.")
print(f"First die: {die1}")
print(f"Second die: {die2}")
print(f"Total of two dice: {total}")

Today’s Goal

1. Understanding arithmetic expressions
2. Using constants

3. Random number generation

Putting it all together:
dicesimulator.py

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

def main():
die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

What's Going On?

die1 10

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 total

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die22 total

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 52 total

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 52 total 7

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10
Total of two dice: 7

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 52 total 7

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"Total of two dice: {total}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"Total of two dice: {total}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

die1 in main() starts as: 10
Total of two dice: 7

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 total

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die21 total

die1 in main() starts as: 10
Total of two dice: 7

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 31 total

die1 in main() starts as: 10
Total of two dice: 7

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 31 total 4

die1 in main() starts as: 10
Total of two dice: 7

What's Going On?
def main():

die1 = 10
print("die1 in main() starts as: " + str(die1))
roll_dice()
roll_dice()
roll_dice()
print("die1 in main() is: " + str(die1))

die1 10

def roll_dice():
die1 = random.randint(1, NUM_SIDES)
die2 = random.randint(1, NUM_SIDES)
total = die1 + die2
print(f"Total of two dice: {total}")

die1 die2 31 total 4

die1 in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7
Total of two dice: 4

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7
Total of two dice: 4
Total of two dice: 5

What's Going On?
def main():

die1 = 10
print(f"die1 in main() starts as: {die1}")
roll_dice()
roll_dice()
roll_dice()
print(f"die1 in main() is: {die1}")

die1 10

die1 in main() starts as: 10
Total of two dice: 7
Total of two dice: 4
Total of two dice: 5
die1 in main() is: 10

You're rockin' it!

