
Functions
Chris Gregg

Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks

Calling functions

print(“hello world”)

input(“string please! ”)

turn_right()

move()

math.sqrt(25)

float(“0.42”)

Defining a function

def turn_right():
turn_left()
turn_left()
turn_left()

Big difference with python functions:
Python functions can take in data, and can return data!

Toasters are functions

For example:

main_toaster

- Thanks Mehran

parameter

Toasters are functions

parameter

Toasters are functions

Toasters are functions

Toasters are functions

return

Toasters are functions

Toasters are functions

Toasters are functions

* You don’t need a second toaster if you want to toast bagels. Use the same one.

Toasters are functions

Toasters are functions

Toasters are functions

Toasters are functions

Toasters are functions

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

parameter(s) return

def name_of_function(parameters):
statements
optionally
return value

• name: what you call the function
• parameters: information passed into function
• return: information given back from the function

Formally

Classic Challenge for CS106A

Perhaps the
most

underrated
concept by

students

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

function “definition”

function “call”

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

name

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Input given

Input expected

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Arguments

Parameters

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

body

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Ends the function and gives
back a value

This call “evaluates” to the value returned

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
Also a function call

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
No parameters (expects no input)

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

When a function ends it “returns”

Parameters

Parameters let
you provide a
function some

information
when you are

calling it.

Is returning
the same as printing?

Is returning
the same as printing?

NO

Learn by Example

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory terminalterminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory

meters 5.2

terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory

meters 5.2

520.0

terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

520.0

terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python3 m2cm.py

520.0

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python3 m2cm.py
520.0

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py

520.0

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py
520.0

520.0

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py
520.0

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py
520.0

910.0

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python3 m2cm.py
520.0
910.0

910.0

Contrasting Case:

How is this function
def meters_to_cm_case1(meters):

return 100 * meters

Different than this function?
def meters_to_cm_case2(meters):

print(100 * meters)

Is returning
the same as printing?

Is returning
the same as printing?

NO

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 num2

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

5

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

5

max memory

num1 5 num2 1

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

5

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

5

larger 5

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

larger 5

terminal

> python maxmax.py

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 num2

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

5

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

5

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

5

larger 5

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

larger 5

Function for IO

I give you

What functions do you define?

print_no_return

MAX_NUM = 4

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

A Full Program

Understand the Mechanism

https://www.pikrepo.com/feftk/matrix-code

https://www.pikrepo.com/feftk/matrix-code

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

result0n i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

result1n i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n i

0 1

1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1
1 1
2 2
3 6

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1
1 1
2 2
3 6

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1
1 1
2 2
3 6

Parameters

Every time a
function is called,
new memory is
created for the

call.

// NOTE: This program is buggy!!

def add_five(x):
x += 5

def main():
x = 3
add_five(x)
print("x = " + x)

Bad Times With functions
Let’s “trace” this

program on the slides

// NOTE: This program is feeling just fine...

def add_five(x):
x += 5
return x

def main():
x = 3
x = add_five(x)
print("x = " + x)

Good Times With functions

For primitives:
Variables are not
passed when you
use parameters.

Values are passed

Pass by “Value”

- Thanks Mehran

More Examples

def main():
num = 5
cow(num)

def cow(grass):
print(grass)

Changed Name

def main():
num = 5
cow()
print(num)

def cow():
num = 10
print(num)

Same Variable Name

def main():
print(“hello world”)
def say_goodbye():

print(“goodbye!”)

No functions in functions

Technically legal, but often a sign at the start that you are confusing definition and calling

def main():
print(“hello world”)
say_goodbye()

def say_goodbye():
print(“goodbye!”)

No functions in functions

Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks

Remember Booleans?

karelIsAwesome = true

myBool = 1 < 2

Boolean Variable

def main():
for i in range(100):

if is_square(i):
print(i)

Is Square

def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
if is_whole(root):

return true
else:

return false

Boolean Return

def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
return is_whole(x)

Boolean Return

• Greek mathematicians took a special interest in numbers that
are equal to the sum of their proper divisors (a proper divisor
of n is any divisor less than n itself). They called such
numbers perfect numbers. For example, 6 is a perfect
number because it is the sum of 1, 2, and 3, which are the
integers less than 6 that divide evenly into 6. Similarly, 28 is
a perfect number because it is the sum of 1, 2, 4, 7, and 14.

• Design and implement a Python program that finds all the
perfect numbers between two limits. For example, if the
limits are 1 and 10000, the output should look like this:

FindPerfect

The perfect numbers between 1 and 10000 are:
6
28
496
8128

Extra Exercise

