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Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks



Calling functions

print(“hello world”)

input(“string please! ”)

turn_right()

move()

math.sqrt(25)

float(“0.42”)



Defining a function

def turn_right():
turn_left()
turn_left()
turn_left()

Big difference with python functions: 
Python functions can take in data, and can return data!



Toasters are functions

For example:

main_toaster

- Thanks Mehran



parameter

Toasters are functions



parameter
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return

Toasters are functions



Toasters are functions



Toasters are functions

* You don’t need a second toaster if you want to toast bagels. Use the same one.
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Toasters are functions



functions are Like Toasters
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functions are Like Toasters

parameter(s) return



def name_of_function(parameters):
statements
# optionally
return value

• name: what you call the function
• parameters: information passed into function
• return: information given back from the function

Formally



Classic Challenge for CS106A

Perhaps the 
most 

underrated 
concept by 

students



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

function “definition”

function “call”



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

name



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Input given

Input expected



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Arguments

Parameters



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

body



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Ends the function and gives
back a value

This call “evaluates” to the value returned



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
Also a function call



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
No parameters (expects no input)



def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

When a function ends it “returns”



Parameters

Parameters let 
you provide a 
function some 

information 
when you are 

calling it.



Is returning 
the same as printing?



Is returning 
the same as printing?

NO



Learn by Example



def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal
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def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day



def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day



def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day



def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day





def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

terminal

> python opinion.py
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No variables 

terminal
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def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables 

print_opinion memory terminalterminal

> python opinion.py



def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables 

print_opinion memory

num

terminal

> python opinion.py



def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables 

print_opinion memory

num 5

terminal

> python opinion.py



def print_opinion(num):
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Parameter Example

def main():
print_opinion(5)

main memory

No variables 

print_opinion memory

num 5

terminal

> python opinion.py
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num 5

terminal
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def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else:
print(“Whatever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables 

terminal

> python opinion.py
I love 5!





def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
terminal

> python3 m2cm.py
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return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

No variables 

terminal

> python3 m2cm.py



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

No variables 

meteresToCm memory terminal

> python3 m2cm.py



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

No variables 

meteresToCm memory

meters 5.2

terminal

> python3 m2cm.py



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

No variables 

meteresToCm memory

meters 5.2

520.0

terminal

> python3 m2cm.py



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

No variables 

520.0

terminal

> python3 m2cm.py



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

result 520.0

terminal

> python3 m2cm.py

520.0



def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example 
main memory

result 520.0

terminal

> python3 m2cm.py
520.0





def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example 
terminal

> python3 m2cm.py
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print(meters_to_cm(5.2))
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def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example 
terminal

> python3 m2cm.py
520.0



def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example 
terminal

> python3 m2cm.py
520.0

910.0



def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example 
terminal

> python3 m2cm.py
520.0
910.0

910.0



Contrasting Case:

# How is this function
def meters_to_cm_case1(meters):

return 100 * meters

# Different than this function?
def meters_to_cm_case2(meters):

print(100 * meters)



Is returning 
the same as printing?



Is returning 
the same as printing?

NO





def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 
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Multiple Return Statements
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No variables 
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def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 num2

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 5 num2

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 5 num2 1

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 5 num2 1

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 5 num2 1

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

max memory

num1 5 num2 1

5

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

5

max memory

num1 5 num2 1

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables 

5

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

5

larger 5

terminal

> python maxmax.py



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

larger 5

terminal

> python maxmax.py





def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)
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return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)
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main memory

No variables 
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def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables 

max memory

num1 1 num2 5



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables 

max memory
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def max(num1, num2):
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return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables 

max memory

num1 1 num2 5

5



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
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main memory
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5



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

5

larger 5



def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

larger 5





Function for IO

I give you

What functions do you define?

print_no_return



MAX_NUM = 4

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

A Full Program



Understand the Mechanism



https://www.pikrepo.com/feftk/matrix-code

https://www.pikrepo.com/feftk/matrix-code
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return result

result0n i
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return result

1result0n 1i
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i
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return result

1result0n 1i



def main():
for i in range(MAX_NUM):
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0

i

def factorial(n):
result = 1
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return result

1result0n 1i
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print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n i

0    1
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for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i
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1result1n 1i
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for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i

0    1



def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i
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3i

6

0    1
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def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0    1
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3    6



def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0    1
1    1
2    2
3    6



Parameters

Every time a 
function is called, 
new memory is 
created for the 

call.



// NOTE: This program is buggy!!

def add_five(x):
x += 5

def main():
x = 3
add_five(x)
print("x = " + x)

Bad Times With functions
Let’s “trace” this 

program on the slides



// NOTE: This program is feeling just fine...

def add_five(x):
x += 5
return x

def main():
x = 3
x = add_five(x)
print("x = " + x)

Good Times With functions



For primitives: 
Variables are not
passed when you 
use parameters. 

Values are passed 



Pass by “Value”

- Thanks Mehran



More Examples



def main():
num = 5
cow(num)

def cow(grass):
print(grass)

Changed Name



def main():
num = 5
cow()
print(num)

def cow():
num = 10
print(num)

Same Variable Name



def main():
print(“hello world”)
def say_goodbye():

print(“goodbye!”)

No functions in functions

Technically legal, but often a sign at the start that you are confusing definition and calling



def main():
print(“hello world”)
say_goodbye()

def say_goodbye():
print(“goodbye!”)

No functions in functions



Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks



Remember Booleans?



karelIsAwesome = true

myBool = 1 < 2

Boolean Variable





def main():
for i in range(100):

if is_square(i):
print(i)

Is Square



def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
if is_whole(root):

return true
else:

return false

Boolean Return



def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
return is_whole(x)

Boolean Return



• Greek mathematicians took a special interest in numbers that
are equal to the sum of their proper divisors (a proper divisor
of n is any divisor less than n itself). They called such
numbers perfect numbers. For example, 6 is a perfect
number because it is the sum of 1, 2, and 3, which are the
integers less than 6 that divide evenly into 6. Similarly, 28 is
a perfect number because it is the sum of 1, 2, 4, 7, and 14.

• Design and implement a Python program that finds all the
perfect numbers between two limits. For example, if the
limits are 1 and 10000, the output should look like this:

FindPerfect

The perfect numbers between 1 and 10000 are:
6
28
496
8128

Extra Exercise


