
Piech + Sahami, CS106A, Stanford University

Functions
Chris Piech and Mehran Sahami

CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

karel_is_awesome = True

my_bool = 1 < 2

Boolean Variable

Piech + Sahami, CS106A, Stanford University

Boolean Operations

a = True

b = False

both_true = a and b

either_true = a or b

opposite = not a

Piech + Sahami, CS106A, Stanford University

Game Show

Piech + Sahami, CS106A, Stanford University

Choose a Door
door = int(input("Door: "))
while the input is invalid
while door < 1 or door > 3 :

tell the user the input was invalid
print("Invalid door!")
ask for a new input
door = int(input("Door: "))

or

and

Piech + Sahami, CS106A, Stanford University

prize = 4

if door == 1:
prize = 2 + 9 // 10 * 100

elif door == 2:
locked = prize % 2 != 0
if not locked:

prize += 6

elif door == 3 :
for i in range(door):

prize += i

The Door Logic

Piech + Sahami, CS106A, Stanford University

Civilization advances by extending the
number of operations we can perform
without thinking about them.

-Alfred North Whitehead

Piech + Sahami, CS106A, Stanford University

Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks

Piech + Sahami, CS106A, Stanford University

Calling functions

print(“hello world”)

input(“string please! ”)

turn_right()

move()

math.sqrt(25)

float(“0.42”)

Piech + Sahami, CS106A, Stanford University

Defining a function

def turn_right():
turn_left()
turn_left()
turn_left()

Big difference with python functions:
Python functions can take in data, and can return data!

Piech + Sahami, CS106A, Stanford University

Toasters are functions

For example:

main_toaster

- Thanks Mehran

Piech + Sahami, CS106A, Stanford University

parameter

Toasters are functions

Piech + Sahami, CS106A, Stanford University

parameter

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

return

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

* You don’t need a second toaster if you want to toast bagels. Use the same one.

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

parameter(s) return

Piech + Sahami, CS106A, Stanford University

def name_of_function(parameters):
statements
optionally
return value

• name: information passed into function
• parameters: information passed into function
• return: information given back from the function

Formally

Piech + Sahami, CS106A, Stanford University

Classic Challenge for CS106A

Perhaps the
most

underrated
concept by

students

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

function “definition”

function “call”

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

name

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Input given

Input expected

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Arguments

Parameters

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

body

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

Ends the function and gives
back a value

This call “evaluates” to the value returned

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
Also a function call

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function
No parameters (expects no input)

Piech + Sahami, CS106A, Stanford University

def main():
mid = average(5.0, 10.2)
print(mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

When a function ends it “returns”

Piech + Sahami, CS106A, Stanford University

Parameters

Parameters let
you provide a
function some

information
when you are

calling it.

Piech + Sahami, CS106A, Stanford University

Is returning
the same as printing?

Piech + Sahami, CS106A, Stanford University

Is returning
the same as printing?

NO

Piech + Sahami, CS106A, Stanford University

Learn by Example

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

> python intro.py

terminal

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

Piech + Sahami, CS106A, Stanford University

def print_intro():
print("Welcome to class")
print("It's the best part of my day.")

No Parameter, No Return

def main():
print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory terminalterminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

Piech + Sahami, CS106A, Stanford University

def print_opinion(num):
if(num == 5):

print(“I love 5!”)
else :
print(“Whattever”)

Parameter Example

def main():
print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory

meters 5.2

terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

meteresToCm memory

meters 5.2

520.0

terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

No variables

520.0

terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python m2cm.py

520.0

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
result = meters_to_cm(5.2)
print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python m2cm.py
520.0

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

520.0

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

520.0

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

910.0

Piech + Sahami, CS106A, Stanford University

def meters_to_cm(meters):
return 100 * meters

def main():
print(meters_to_cm(5.2))
print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0
910.0

910.0

Piech + Sahami, CS106A, Stanford University

Contrasting Case:

How is this function
def meters_to_cm_case1(meters):

return 100 * meters

Different than this function?
def meters_to_cm_case2(meters):

print(100 * meters)

Piech + Sahami, CS106A, Stanford University

Is returning
the same as printing?

Piech + Sahami, CS106A, Stanford University

Is returning
the same as printing?

NO

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 num2

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

max memory

num1 5 num2 1

5

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

5

max memory

num1 5 num2 1

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

No variables

5

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

5

larger 5

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

main memory

larger 5

terminal

> python maxmax.py

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(5, 1)

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 num2

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

max memory

num1 1 num2 5

5

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

No variables

5

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

5

larger 5

Piech + Sahami, CS106A, Stanford University

def max(num1, num2):
if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():
larger = max(1, 5)

main memory

larger 5

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Function for IO

I give you

What functions do you define?

print_no_return

MAX_NUM = 4

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

A Full Program

Understand the Mechanism

https://www.pikrepo.com/feftk/matrix-code

https://www.pikrepo.com/feftk/matrix-code

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

result0n i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result0n 1i

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0i

1

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

result1n i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n i

0 1

1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 1i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

0

i

def factorial(n):
result = 1
for i in range(1, n+1):

result *= i

return result

1result1n 2i

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

1i

1

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1
1 1

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

2i

2

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1
1 1
2 2

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

3i

6

0 1
1 1
2 2
3 6

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1
1 1
2 2
3 6

def main():
for i in range(MAX_NUM):

print(i, factorial(i))

4i

0 1
1 1
2 2
3 6

Piech + Sahami, CS106A, Stanford University

Parameters

Every time a
function is called,
new memory is
created for the

call.

Piech + Sahami, CS106A, Stanford University

// NOTE: This program is buggy!!

def add_five(x):
x += 5

def main():
x = 3
add_five(x)
print("x = " + x)

Bad Times With functions
Let’s “trace” this

program on the slides

Piech + Sahami, CS106A, Stanford University

// NOTE: This program is feeling just fine...

def add_five(x):
x += 5
return x

def main():
x = 3
x = add_five(x)
print("x = " + x)

Good Times With functions

Piech + Sahami, CS106A, Stanford University

For primitives:
Variables are not
passed when you
use parameters.

Values are passed

Piech + Sahami, CS106A, Stanford University

Pass by “Value”

- Thanks Mehran

Piech + Sahami, CS106A, Stanford University

More Examples

Piech + Sahami, CS106A, Stanford University

def main():
num = 5
cow(num)

def cow(grass):
print(grass)

Changed Name

Piech + Sahami, CS106A, Stanford University

def main():
num = 5
cow()
print(num)

def cow():
num = 10
print(num)

Same Variable Name

Piech + Sahami, CS106A, Stanford University

def main():
print(“hello world”)
def say_goodbye():

print(“goodbye!”)

No functions in functions

Technically legal, but often a sign at the start that you are confusing definition and calling

Piech + Sahami, CS106A, Stanford University

def main():
print(“hello world”)
say_goodbye()

def say_goodbye():
print(“goodbye!”)

No functions in functions

Piech + Sahami, CS106A, Stanford University

Learn How To:
1. Write a function that takes in input

2. Write a function that gives back output
3. Trace function calls using stacks

Piech + Sahami, CS106A, Stanford University

Remember Booleans?

Piech + Sahami, CS106A, Stanford University

karelIsAwesome = true

myBool = 1 < 2

Boolean Variable

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

def main():
for i in range(100):

if is_square(i):
print(i)

Is Square

Piech + Sahami, CS106A, Stanford University

def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
if is_whole(root):

return true
else:

return false

Boolean Return

Piech + Sahami, CS106A, Stanford University

def main():
for i in range(100):

if is_square(i):
print(i)

def is_square(x):
root = math.sqrt(x)
return is_whole(x)

Boolean Return

Piech + Sahami, CS106A, Stanford University

• Greek mathematicians took a special interest in numbers that
are equal to the sum of their proper divisors (a proper divisor
of n is any divisor less than n itself). They called such
numbers perfect numbers. For example, 6 is a perfect
number because it is the sum of 1, 2, and 3, which are the
integers less than 6 that divide evenly into 6. Similarly, 28 is
a perfect number because it is the sum of 1, 2, 4, 7, and 14.

• Design and implement a Python program that finds all the
perfect numbers between two limits. For example, if the
limits are 1 and 10000, the output should look like this:

FindPerfect

The perfect numbers between 1 and 10000 are:
6
28
496
8128

Extra Exercise

