Functions

Chris Piech and Mehran Sahami
CS106A, Stanford University

W —

ARt

..‘

Boolean Variable

karel_i s _awesome = True

my bool = 1 < 2

Boolean Operations

a = True

b = False

both true = a and b
either true = a or b

opposite = not a

Game Show

O ® GameShow

Welcome to the CS106A game show!

Choose a door and win a prize
Door: 2

You chose door 2

You win $-

Choose a Door

door = int(input("Door: "))
while the input is invalid
while[door < lﬁor[door > 3]:
tell the user the input was invalid
print("Invalid door!")
ask for a new input
door = int(input("Door: "))

or

The Door Logic

prize = 4

if door ==
prize = 2 + 9 // 10 * 100

elif door == 2:
locked = prize % 2 != 0
if not locked:
prize += 6

elif door ==
for 1 in range(door):
prize += 1

Civilization advances by extending the
number of operations we can perform
without thinking about them.

-Alfred North Whitehead

Learn How To:

1. Write a function that takes in input
2. Write a function that gives back output
3. Trace function calls using stacks

Calling functions

turn right()

move () input(“string please! ")

print (“hello world”)
float (V"0.42"7)

math.sqrt (25)

Defining a function

def turn right():
turn left()
turn left()
turn left()

Big difference with python functions:
Python functions can take in data, and can return data!

Toasters are functions

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

Formally

def name_of_function (parameters) :
statements
optionally
return value

name: information passed into function
parameters: information passed 1nto function

return: information given back from the function

Classic Challenge for CS106A

Perhaps the
most
underrated
concept by
students

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

|”

def main () : function “cal
mid =[average(5.0, 10.2)]
print (mid)

function “definition”

(aef average (a, b):
sum = a + b

return sum / 2
_ J

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

Nname

def[averageka, b) :
sum = a + b
return sum / 2

Anatomy of a function

def main () : Input given
mid = averageBS.O, 10.2)]
print (mid)

Input expected

def averag#(a, b)r
sum = a +

return sum / 2

Anatomy of a function

def main() : Arguments
mid = averageBS.O, 10.2)]
print (mid)
Parameters

def averag#(a, b)t
sum = a +

return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):

sum = a + b
return sum / 2 body

Anatomy of a function

def main () : This call “evaluates” to the value returned
[mid =]average(5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b

[return sum / 2] Ends the function and gives
back a value

Anatomy of a function

Also a function call

rdef main () :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

No parameters (expects no input)

def mai

mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

When a function ends it “returns”

def average(a, b):
sum = a + b
return sum / 2

Parameters

Parameters let
you provide a
function some
information
when you are
calling it.

Is returning
the same as printing?

Is returning
the same as printing?

NO

Learn by Example

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

- > python intro.p
def main() : Y Y

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

[def main () :
print intro()

] > python intro.py

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i i

[print;intro()]

No Parameter, No Return

[def print intro(): l
print("Welcome to class")

print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i i

print intro()

No Parameter, No Return

def print intro():

[print("Welcome to class") fJ
print ("It"s the best part of my day.")

terminal

> python intro.py

def main() : Welcome to class

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")
[-print("It's the best part of my day.")]

terminal

. . > python intro.py
def main() : Welcome to class

print intro () It’s the best part of my day

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

> python intro.py

def main() : Welcome to class
print intro () It’s the best part of my day

terminal

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. . > python intro.py
def main() : Welcome to class

[print intro ()] It’s the best part of my day

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. . > python intro.py
def main() : Welcome to class

print intro () It’s the best part of my day

Parameter Example

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main() :
print opinion (5)

terminal

> python opinion.py

Parameter Example

main memory terminal
> python opinion.py
No variables
def print opinion (num) :
if(num == 5) :
print ("I love 5!7)
else
print (“Whattever”)
[def main () :]

print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
[print;ppinion(S)]

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables

def[;rint_ppinion(num):]
if (num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num

def print;ppinionknumf}
if(num == 5):
print ("I love 5!7)

else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print;ppinionknumf}
if(num == 5):
print ("I love 5!7)

else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print opinion (num) :
lif(num == 5)}

print ("I love 5!7)
else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if(num == 5) :
[print(“I love 5!")]
else
print (“"Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

i

def main() :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

i

def main() :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main() :
[print_ppinion(S)]

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
D print opinion (5)

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

[def main () :]
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

def main () :
result =[meters_ﬁo_pm(5.2ﬂ
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
No variables

def[meters_ﬁo_pm(meters):]
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py

No variables meters 5.2

def meters_ﬁo_pmkmetersﬂ:
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
No variables meters 5.2

def meters to cm(meters):
[return 100 * meters] 520.0

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

def main() : 520.0
result =[E§ters_ﬁo_pm(5.2ﬂ
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520.0

def meters to cm(meters):
return 100 * meters

def main|() : 520.0
[result = meters_ﬁo_pm(S.Zﬂ
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520.0 520.0

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
[print(result)]

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main () :
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

[def main():]
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main () :
print{ﬁeters_ﬁo_pm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() : 520.0
print{ﬁeters_ﬁo_pm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() : 520.0

[print(meters_ﬁo_pm(S.Z)”
print (meters to cm(d.

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_to_pm(Q.lﬂ)

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_to_pm(Q.lﬂ)

910.0

Parameter and Return Example

terminal

> python m2cm.py
520.0
910.0

def meters to cm(meters):
return 100 * meters

def main () :
print (meters to cm(5.2))

[' print (meters_to_cm(9.1))]
910.0

Contrasting Case:

How is this function
def meters to cm casel (meters):
return 100 * meters

Different than this function?
def meters to cm case2(meters):
print (100 * meters)

Is returning
the same as printing?

Is returning
the same as printing?

NO

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

[def main () : 5]
Targer = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () :

terminal

> python maxmax.py

[larger = max (5, 1)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
larger = maka, 1”

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

No variables num1l 5 num?2 1

def max(numl, num?2) : terminal
if numl >= num?2:
> python maxmax.py

return numl

return num2

def main () :
larger = max(5, 1)

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl]

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl] 5

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : S5
larger = maka, 1”

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : 5
larger = maka, 1ﬂ

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () : 5
[larger = max (5, 1)]

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2) :
if numl >= num2:
return numl

terminal

> python maxmax.py

return num2

def main () :
D larger = max (5, 1)

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max (5, 1)

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

ldef main () : l
arger = max(l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
larger = maxkl, Sﬂ

Multiple Return Statements

main memory Max memory

No variables numl num2

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables numil 1 num?2 5

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables num1 1 num?2 5

def max(numl, num?) :
[if numl >= num2:|
return num

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables num1 1 num?2 5

def max(numl, num2) :
if numl >= num2:
return numl

[return num2] 5

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : 5
larger = max[l, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () : 5
[larger = max (1, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
D larger = max(1l, 5)

Function for 1O

| give you

print_no_return

What functions do you define?

Piech + Sahami, CS106A, Stanford University

A Full Program

MAX NUM = 4

def main() :
for i in range (MAX NUM) :
print (i1, factorial(i))

def factorial (n):
result =1
for i in range(l, n+l):
result *= 1

return result

Understand the Mechanism

% §O3E e Coca SRl rrcae. ndmﬂilpluﬁmn‘o O e 1‘00 ‘0 ‘] N

e~
eyl e 00 © “~Ce JToIG . :G.E CosR iy L ,
. ¥E D v ‘Q.& o(oSO - e 820

“:”‘mo‘ob”xr }shr u”!gnetql Qolawmbnma / o
u.-u:vm %u Nc-l ao..-m!»‘.ﬂvhrépovhvc -umo.ﬂ?zzuu. L
vare) \c .\v \ bt TS) D

Y sy Y 0\. OO TS Y

e &—(‘.c W G«\i&.ﬁ!\oﬂ e T ONg O R Ry N\

,.h.\, ...%3 n\.ﬂ%
:N Nn.(}\ttﬁ:\h \o\ﬂt@

... ".”owum.wv.&mﬁ.:i. 3

ol T = =
w- &.n- NW_ .nﬁvraﬁu\v\mw\.\m\\.wmﬁ wﬂ.uﬂw.mnwn.,&/o,ﬂg,ﬂp -

s.a.ﬁ qe..o?ﬁ?%\wﬁuma oo @

N ..\\\\ \\\\\mu&o_lo.ll. 00110.@1./,90/0”//// / /
u..m.u " ST AR AN 4, A\,
.c.zw.nw%,%%.mﬂwwn.o%ﬁo_..oozﬂo ﬁ@.oe ZW

p co N0 Wt D08 O = O 01.0001...1..ODG .OO.Iﬂw
Dwere 4 iddt G B e, L 1 M

dgm.tﬂ%iﬁtOLOLOOLOL 101010%001&%0101 J ’

m rmmm»n.o wmugww.s?ﬁﬁ%m%@tavf01oc ,_...
+..c *EP T-- Fﬂ.. 7“119u§§g§i,8101011jﬂw011 OO

?.qm.o.ro 0) €D e o (D e O ek .

8...... Jr.s.@.canqaive 0010110....01.304 c
_...Teu. TR G- ‘G- RGO Ir EFORE NEQ LS T P D VOPS VS SRTIHA - DAY AN 0o veon egeg. am

_d n-iﬂg%19%§i¢0300101030 Or~O0™C \

.:.m.oﬂ.ﬂwuaﬁ.ﬂynmll.OOOLO 0101001.00\..%0100\ & Q

3 a-.; P ..(.I.H.Oa VAWBQJ wﬂo.-c.o%!f.pma..loowt&&«n«lo

v
..... xS 1
, b&?éasieﬁz .mmms:: \01 b \ \\\ \\w
l / 4 ,

,%

- namw
an#a. S o

s-n

= 27
¥ . 01 DL o T ¢ L=
%. T w.zw.uwoomu,J e Al
.tv_“w“a.lomv b veiw koonnm.w.i&gsuvn\u.‘lwg\ £ “
ﬁﬂ‘, 260 @.g,.nutsﬂuu e e v

oofsaz0~

T A L N —
alr,mﬂn.ﬂrloo I..._\Q-\ o

https://www.pikrepo.com/feftk/matrix-code

def main () :
for i in range (MAX NUM) :
print (i1, factorial(i))

def ma
for

in() :
i in range (MAX NUM)|:
print (i1, factorial(i))

def main () :
for i in rangekMAX NUM}:
print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

def main () :
for i in range (MAX NUM) :

print (i, Ffactorial (1)

def factorial(n):
result =1
for i in range(l, n+l):
result *= 1

return result

n 0 result

def factorial(n):

result =1

for i in range(l, n+l):
result *= 1

return result

n 0 result

def factorial(n):
result =1
for|i in range(l, n+l)|:
result *= 1

return result

n 0 result

def factorial(n):
result =1
for i in range(l|, n+l):
result *= 1

return result

n 0 result

def factorial(n):
result =1
for i in range(l, n+l):
result *= 1

return result

n 0 result

def main () :
for i in range (MAX NUM) :

print (i1, factorial(i))
\ J

Y

1

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i)
o

Y

1

def main() :
for i in range [MAX NUM] :
print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i)

def main () :
for i in range (MAX NUM) :

print (i, |factorial (i)

def factorial(n):
result =1
for i in range(l, n+l):
result *= 1

return result

n 1 result

def factorial(n):

result =1

for i in range(l, n+l):
result *= 1

return result

n 1 result

def factorial(n):

result =1

for i in range(l, n+l):
result *= 1

return result

n 1 result

def factorial (n)
result =1

for 1 in range

result *=

return result

i

(1

~

n+l) :

result

def factorial(n):
result =1
for i in range(l, n+l):

result *= 1

return result

n 1 result

def factorial (n)
result =1

for 1 in range

result *=

return result

i

(1,

n+l)|:

result

def factorial(n):
result =1
for i in range(l, n+l):
result *= 1

return result

n 1 result

def main () :
for i in range (MAX NUM) :
print (i, E’actorial(iL)

Y

1

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i))

Y

1

def main () :
for i in range (MAX NUM) :
print (i1, factorial(i))

def main () :

for i in range [MAX NUM) :

print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

def main () :
for i in range(MAx_NUM):

print (i, |factorial (i)

def main () :
for i in range (MAX NUM) :
print (i, \factorial(ij))

Y

2

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i))

Y

2

=

=

def main () :
for 1 in

range(MAX NUM) |

print (1, factorlal(l))

=

=

def main () :
for i in rangekMAX NUM]:
print (i1, factorial(i))

=

=

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

=

=

def main () :
for i in range(MAx_NUM):

print (i, |factorial (i)

=

=

def main () :
for i in range (MAX NUM) :
print (i, E’actorial(i)J)

Y

6

=

=

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))
) . Y —

6

(VI \C I i)

O NR R

def main () :
for 1 in

range (MAX NUM]) :

print (i1, factorial(i))

(VI \C I i)

O NR R

def main () :
for i in rangekMAX NUM]:
print (i1, factorial(i))

(VI \C I i)

(o) W \ S I i

Parameters

Every time a
function is called,
new memaory IS
created for the
call.

Bad Times With functions

Dr,, ¢
// NOTE: This program is buggy!' foéo,& & '?/29
7 [0 62‘6.
def add five(x): 5@& %
X += 5 //O/G&

def main() :
x = 3
add five (x)
print("x = " + x)

Good Times With functions

// NOTE: This program is feeling just fine...

def add five(x):
X += 5
return x

def main() :
x = 3
x = add five (x)
print("x = " + x)

For primitives:
Variables are not
passed when you
use parameters.
Values are passed

Pass by “Value”

+ Thanks Mehran X

More Examples

Changed Name

def main() :
num = 5
cow (num)

def cow(grass):
print (grass)

Same Variable Name

def main() :
num = 5
cow ()
print (num)

def cow() :
num = 10
print (num)

No functions in functions

def main() :
print (“hello world”)
def say goodbye() :
print (“goodbye!”)

Technically legal, but often a sign at the start that you are confusing definition and calling

No functions in functions

def main () :
print (“hello world”)
say goodbye ()

def say goodbye() :
print (“goodbye! ")

Learn How To:

1. Write a function that takes in input
2. Write a function that gives back output
3. Trace function calls using stacks

Remember Booleans?

Boolean Variable

karelIsAwesome = true

myBool = 1 < 2

Is Square

def main() :
for i in range(100):
if is square(i):
print (1)

Boolean Return

def main() :
for i in range(100):
if is square(i):
print (1)

def is square(x):
root = math.sqgrt (x)
if is whole(root):
return true
else:
return false

Boolean Return

def main() :
for i in range(100):
if is square(i):
print (1)

def is square(x):
root = math.sqgrt (x)
return is whole (x)

Extra Exercise

* Greek mathematicians took a special interest in numbers that
are equal to the sum of their proper divisors (a proper divisor
of n 1s any divisor less than n itself). They called such
numbers perfect numbers. For example, 6 1s a perfect
number because it 1s the sum of 1, 2, and 3, which are the
integers less than 6 that divide evenly into 6. Similarly, 28 1s
a perfect number because 1t 1s the sum of 1, 2, 4, 7, and 14.

* Design and implement a Python program that finds all the
perfect numbers between two limits. For example, if the
limits are 1 and 10000, the output should look like this:

(006 FindPerfect

The perfect numbers between 1 and 10000 are:
6

28

496

8128

