Functions and Parameters

Chris Gregg
Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

—

Housekeeping

%

-

 Reminder: Diagnostic is on Thursday, July 9th
— Takes place during class time
— Like an exam
e Really meant for you to gauge your understanding
— Covers material through today

— Email Wil if you have a time conflict or are outside the
Americas

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program
3. Learn about Python's doctest feature

Recall, Our Friend the Function

def main() : function “call”

avg =[average(5.0, 10.2)]

print (avg)

function “definition”

faef average (a, b):‘\

sum = a + b

return sum / 2
g J

Recall, Our Friend the Function

arguments
def main () :) A \
avg = average (5.0, 10.2)
print (avg)
parameters

~

def average(a, b):
sum = a + b
return sum / 2

Parameters

Parameters let
you provide a
function with
some information
when you are
calling it.

A Full Program

Constant - wvisible to all functions
MAX NUM = 4

def main() :
for i in range (MAX NUM) :
print (i1, factorial(i))

def factorial (n):
result =1
for i in range(l, n + 1):
result *= i

return result

A Full Program

Constant - wvisible to all functions
MAX NUM = 4

def main|() :
for i in range (MAX NUM) :
print (i, factorial(i))

def factorial(n) :
result =1
for i in range(l, n + 1):
result *= 1

return result

Understand the mechanism

def main () :
for i in range (MAX NUM) :
print (i1, factorial(i))

def ma
for

in() :
i in range (MAX NUM)|:
print (i1, factorial(i))

def main () :
for i in rangekMAX NUM}:
print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

def main () :
for i in range (MAX NUM) :

print (i, Ffactorial (1)

def factorial(n):
result =1
for i in range(l, n + 1):
result *= 1

return result

n 0 result

def factorial(n):

result =1

for i in range(l, n + 1):
result *= 1

return result

n 0 result

def factorial(n):
result =1

for|i in range(l, n + 1):

result *= 1i

return result

n 0 result

def factorial(n):
result =1

for i in rangel(l, n + 1)|:

result *= 1i

return result

n 0 result

def factorial(n):
result =1
for i in range(l, n + 1):
result *= 1

return result

n 0 result

def main () :
for i in range (MAX NUM) :

print (i1, factorial(i))
\ J

Y

1

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i)
o

Y

1

def main() :
for i in range [MAX NUM] :
print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

def main () :
for i in range (MAX NUM) :

print (i, |factorial (i)

def factorial(n):
result =1
for i in range(l, n + 1):
result *= 1

return result

n 1 result

def factorial(n):

result =1

for i in range(l, n + 1):
result *= 1

return result

n 1 result

def factorial(n):
result =1

for i in range(l, n + 1):

result *= 1i

return result

n 1 result

def factorial (n)
result =1

for 1 in range

result *=

return result

i

(1,

n + 1)|:

result

def factorial(n):
result =1
for i in range(l, n + 1):

result *= 1

return result

n 1 result

def factorial (n)
result =1

for 1 in range

result *=

return result

i

(1,

n + 1)|:

result

def factorial(n):
result =1
for i in range(l, n+l):
result *= 1

return result

n 1 result

def main () :
for i in range (MAX NUM) :
print (i, E’actorial(iL)

Y

1

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i))

Y

1

def main () :
for i in range (MAX NUM) :
print (i1, factorial(i))

def main () :
for i in rangekMAX NUMb:
print (i1, factorial(i))

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

def main () :
for i in range(MAx_NUM):

print (i, |factorial (i)

def main () :
for i in range (MAX NUM) :
print (i, \factorial(ij))

Y

2

def main () :
for i in range (MAX_NUM):

|print (i, factorial (i))

Y

2

N R O

[

def main() :

for i1 in range(MAX NUM) |

print (1, factorlal(l))

N R O

[

def main () :
for i in rangekMAX NUM]:
print (i1, factorial(i))

N R O

[

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))

N R O

[

def main () :
for i in range(MAx_NUM):

print (i, |factorial (i)

N R O

[

def main () :
for i in range (MAX NUM) :
print (i, E’actorial(i)J)

Y

6

N R O

[

def main () :
for i in range (MAX_NUM):

|print (i, factorial(i))
) . Y —

6

(VI \C I i)

AONBR R

def main() :

for i in range (MAX NUM) :

print (i1, factorial(i))

(VI \C I i)

AONBR R

def main () :
for i in rangekMAX NUM]:
print (i1, factorial(i))

(VI \C I i)

oONR R

def main () :
for i in range (MAX NUM) :
print (i1, factorial(i))

Done!

(VI \C I i)

AONBR R

Parameters

Every time a function is
called, new memory is
created for that call.

Parameter values are
passed in.

All local variables start
fresh (no old values)

An interlude:
doctest

Doctest

def factorial(n):
This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial
Doctests:
>>> factorial(3)
6
>>> factorial(1l)
1
>>> factorial(0)
1
result =1
for i in range(1l, n + 1):
result *= 1
return result

Doctest

def factorial(n):

mimn

This function returns the factorial of n
Input: n (number to compute the factorial of)
Returns: value of n factorial

Doctests:

>>> factorial(3)
6 Say this was in file "fact.py"

>>> factorial(1) To run doctests (on PC):
1

> -m doctest fact. -V
>>> factorial(0) PY PY

1

result = 1

for i in range(1, n + 1):
result *= 1

return result

Let's try 1it!!

Bad Times With functions

{
NOTE: This program is buggy!'!' é»g%m?
- QQb/}bo
def add five (x): %,b

x += 5

def main() :
x = 3
add five (x)
print (f"x = {x}")

Bad Times With functions

NOTE: This program is buggy!'!'

def add five(x):
X += 5

def main() :
x = 3
add five (x)
print (f"x = {x}")

Good Times With functions

NOTE: This program is feeling just fine...

def add five(x):
X += 5
return x

def main() :
x = 3
x = add five(x)
print (f"x = {x}")

For primitive types (e.g., int,
float, Boolean, string):

* Copies of values are passed
as parameters.

* Variable that was passed in
as an argument is not
changed when you modify
parameter in the function.

Pass by “Value”

Careful!

No Functions in Functions

def main() :
print ("hello world")
def say goodbye() :
print ("goodbye!")

Technically legal, but often a sign at
the start that you are confusing
function definition and function call

No functions in functions

def main () :
print ("hello world")
say goodbye ()

def say goodbye() :
print ("goodbye!")

Learning Goals

1. Get more practice with function parameters
2. Understand information flow in a program
3. Learn about Python's doctest feature

The Whole Burrito:
calendar.py

