Chris Gregg
Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping |

AN 7

-

* Final Reminder: Diagnostic is on Thursday
— Takes place during class time

— Please download BlueBook software well before the exam

— Like an exam, but meant for you to gauge your understanding
* It's also 10% of your course grade
— Covers material through this past Thursday

— Email Wil if you have a time conflict or are outside the
Americas

Housekeeping Il

AN 7

-

* Handout #8: Image Reference Guide
— We'll be talking through a lot of that today

* Handout #9: Assignment #3
— Will be posted tomorrow (July 7th)

— Due next week — start early!
— More complex than Assignment #2

Global Variables: Bad Style

Constant - visible to all functions
NUM DAYS IN WEEK = 7

Global variable - visible to all functions
balance = 0

— Different variables with the same name!
def main(): Super confusing!
balance = int(input("Initial balance: "))
while True:
amount = int(input("Deposit (@ to quit): "))
if amount ==

break * Also, really BAD style

deposit(amount) — So bad, that Python won't even let you do

it unless you basically add a command
def deposit(amount): that says "l want to have bad style

balance += amount — I'm not going to show you that command
in Python

— But, if you know it already, DON'T use it!
— We're in polite company

Using Parameters: Good Style

.

AWl
Eﬁ&_L 2

i |

&

Don't want using your toaster I ._

to impact your refrigerator! L
‘E’J%}

[

def main():
balance = int(input("Initial balance: "))
while True:
amount = int(input("Deposit (@ to quit): "))
if amount == 0O:
break

balance = deposit(balance, amount)

Encapsulation Principle:

def deposit(balance, amount): Data used by a function

balance += amount
return balance should be a parameter or
encapsulated in function

Learning Goals

1. Understanding how images are represented
2. Learning about the Simplelmage library
3. Writing code that can manipulate images

Images

What is an Image?

* Image made of square pixels
— Example: flower.png

* Each pixel has x and y coordinates in the'image
— The origin (0, 0) is at the upper-left corner
— y increases going down, X increases going right

* Each pixel has single color encoded as 3 RGB values
— R=red; G =green; B =blue (0 O) X

— Each value represents brightness for >
that color (red, green, or blue)

— Can set RGB values to make any color!

Pixels in an Image Close-Up

image

Pixel (1, 0)

1

\ red: b green:250 blue:7
0 1 2 3 4

(1.e. shade of green)

Pixel (4, 2)
red: 241 green:252 blue:’3

I
ke
I
= Lo M = O

Pixel (2, 3):
red:247 green:250 blue:237

Working with Images:
Pillow and the
Simplelmage library

Installing Pillow

* Pillow is a version of the Python Imaging Library (PIL)
— Nick Parlante built Simplelmage library using Pillow
— You'll be using Simplelmage in this class
— So, you need to install Pillow first

* To install Pillow, open PyCharm Terminal tab and type
(note the capital P in Pillow):

— OnaPC: py -m pip install Pillow
— OnaMac: python3 -m pip install Pillow
— Will see something like:

..bunch of stuff...
Successfully installed Pillow-7.1.2

 Handout #8: Image Reference Guide contains more
information

Using Simplelmage Library

* In folders for assignment or lecture on images, there is
a file simpleimage.py
— This is the Simplelmage library

* To use the Simplelmage library in your code, include at
the top of your program file:

from simpleimage import SimplelImage

* This is importing the Simplelmage module, so that it is
accessible in the code you write

— Similar to when you used import random to use random
number generator library

Functions in Simplelmage Library

* Create a Simplelmage object by reading an image from
file (jpg, png, gif, etc.) and store it in a variable.

— Note: each Simplelmage object is made up of Pixel objects
my_image = Simplelmage(filename)

* Show the image on your computer.
my_image.show()

* We can manipulate an image by changing its pixels
* We can also create new images and set its pixels

Accessing Pixels in an Image

We can use a new kind of loop called a "for-each" loop
Recall basic for loop (using range):
for i in range(num):
i will go from 0 to num - 1
do something()

For-each loop:

for item in collection :
Do something with item

For-each loop with image:
image = SimpleImage ("flower. jpg")
for pixel in image:
Do something with pixel

For-Each Loop Over Pixels

image = SimpleImage ("flower. jpg")
for pixel in image: .
Body of loop } This code gets

Do something with pixel pea’Fed once for eac
pixel in image

* " Like variableiin for loop using range(), pixel is
a variable that gets updated with each loop

iteration.
« pixel gets assigned to each pixel object in the

Image in turn.

Properties of Images and Pixels

* Each Simplelmage image has properties you can access:
— Can get the width and height of image (values are in pixels)

image.width, image.height

* Each pixel in an image also has properties:
— Can get x, y coordinates of a pixel in an image
pixel.x , pixel.y

— Can get RGB values of a pixel
pixel.red, pixel.green, pixel.blue
* These are just integers between 0 and 255

Example: A Darker Image

def darker(filename):
Reads image from file specified by filename.
Makes image darker by halving red, green, blue values.
Returns the darker version of 1image.
Demonstrate Looping over all the pixels of an image,
changing each pixel to be half its original 1intensity.
image = SimpleImage(filename)
for pixel in image:
pixel.red = pixel.red // 2
pixel.green = pixel.green // 2
pixel.blue = pixel.blue // 2
return image

Example: Get Red Channel

def red_channel(filename):
Reads image from file specified by filename.
Changes the image as follows:
For every pixel, set green and blue values to @
yielding the red channel.
Return the changed 1image.
image = SimpleImage(filename)
for pixel in image:
pixel.green = 0
pixel.blue = ©
return image

Let's take it out for a spin!
Imageexamples.py

Greenscreening

What is Greenscreening?

e Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

What is Greenscreening?

e Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6
def greenscreen(main_filename, back filename):

image = SimpleImage(main_filename)
back = SimpleImage(back filename)

What is Greenscreening?

e Like the movies (and Zoom backgrounds)

— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:

What is Greenscreening?

e Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:
average = (pixel.red + pixel.green + pixel.blue) // 3
See 1f this pixel 1s "sufficiently"” green
if pixel.green >= average * INTENSITY_ THRESHOLD:

What is Greenscreening?

e Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:
average = (pixel.red + pixel.green + pixel.blue) // 3
See 1f this pixel 1s "sufficiently"” green
if pixel.green >= average * INTENSITY_ THRESHOLD:
If so, overwrite pixel 1in original image with
corresponding pixel from the back image.
X = pixel.x
y = pixel.y
image.set pixel(x, y, back.get pixel(x, y))
return image

Let's try it!
(But using red instead of green)

Mirroring an image

Nested Loops

image = Simplelmage(filename)
width = image.width
height = image.height

for y in range(height):
for x in range(width):
pixel = image.get_pixel(x, y)
do something with pixel

width: 100 height: 50

o 1 2 3 896 97 98 99

Mirroring an Image

def mirror_image(filename):
image = Simplelmage(filename)
width = image.width
height = image.height

Create new image to contain mirror reflection
mirror = Simplelmage.blank(width * 2, height)

for y in range(height):
for x in range(width):
pixel = image.get_pixel(x, y)
mirror.set_pixel(x, y, pixel)
mirror.set_pixel((width * 2) - (x + 1), y, pixel)
return mirror

| wanna see |t!

What's The Difference?

def darker (filename) :
img = SimpleImage (filename)
for y in range (img.height):

def darker (filename) :
img = SimpleImage (filename)

for px in img: for x in range (img.width) :
px.red = px.red // 2 px = img.get pixel (x, y)
pX.green = px.green // 2 px.red = px.red // 2
px.blue = px.blue // 2 px.green = px.green // 2

return img px.blue = px.blue // 2

return img

Nothing!

We only want to use nested for loops if

we care about x andy.
(Needed that for mirroring image.)

Learning Goals

1. Understanding how images are represented
2. Learning about the Simplelmage library
3. Writing code that can manipulate images

