Chris Gregg
Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

B '

Housekeeping

%

|-
* Chris is holding Ask Me Anything (AMA) sessions

— On Zoom
— July 15th from 11:30am-12:30pm (PDT) (right after class)

e Link will be the same as lecture — I'll just stay on lecture that day

e Assignment #3, Pyramid
— Blue line at bottom of canvas doesn't show up on Macs
— You don't need to worry about that

The Python Console

e Can run Python interactively using the "console"
— In PyCharm click "Python Console" tab at bottom of window
— In Terminal, run Python (e.g., typing "py" or "python3" or
"python", depending on your platform) to get console
* Console has prompt: >>>
— Can type and execute Python statements (and see results)

— Example:
>>> x = 5
>>> x
5

— Easy way to try things out to answer questions you may have
— Use exit () to leave console

Let’'s Take the Console
Out For a Spin..

And Then There Were None

* The term None is used in Python to describe "no value"

— For example, it is the value you would get from a function
that doesn't return anything

— WHAT?!

— Example:
>>> x = print("hi")
>>> print(x)
None

— Comparing anything to None (except None) is False

* Why does None exist?
— Denotes when the suitcase for a variable has "nothing" in it

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists
3. Understand how lists work as parameters

Lists

What is a List?

* Alistis way to keep track of an ordered collection of
items

— Items in the list are called "elements"

— Ordered: can refer to elements by their position

— Collection: list can contain multiple items

* The list dynamically adjusts its size as elements are
added or removed

* Lists have a lot of built-in functionality to make using
them more straightforward

Show Me the Lists!

* Creating lists
— Lists start/end with brackets. Elements separated by commas.
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* List with one element is not the same as the element

— Could try this out on the console:
>>> list one = [1]

>>> one = 1

>>> list _one == one

False

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed

— Indexes start from O

letters — ‘a’ ‘b’ ‘¢ ‘d’ ‘e’
0 1 2 3 4
e Access individual elements:
letters[0] is 'a’
letters[4] is 'e'

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed

— Indexes start from O

letters — 'x' 'b' ‘¢ ‘d’ ‘e’
0 1 2 3 4
e Access individual elements:
letters[0] is 'a’
letters[4] is 'e'

* Can set individual elements like regular variable:
letters[0] = 'x'

Gelting Length of a List

e Consider the following list:
letters = ['a', 'b', '¢', 'd', 'e']
e Can get length of list with 1en function:

len(letters) is 5
— Elements of list are indexed from 0 to length — 1

 Example:

for i in range(len(letters)):
print (f"{i} -> {letters[i]}")

0 -> a
l1 -> Db
2 -> ¢
3 ->d
4 -> e

List Length: The Advanced Course

e Recall our old friends:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]

strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []
* Pop quiz!
len(my list) =3
len(reals) = 4
len(strs) =5
len (mix) =5

len(empty list) =0

The Strangeness of Indexing

e Can use negative index to work back from end of list
— What?!
letters = ['a', 'b', '¢', 'd', 'e']
* Bring me the strangeness!
letters[-1] is 'e'
letters[-2] is 'd’
letters[-5] is 'a'

— For indexes, think of —x assameas len(list)—x
letters[-1] is sameas letters[len(letters)-1]

e How about this?
letters[6]

IndexError: list index out of range

Building Up Lists

e Can add elements to end of list with .append
alist = [10, 20, 30]

alist —>| 10 | 20 | 30
[10, 20, 30]

Building Up Lists

e Can add elements to end of list with .append

alist = [10, 20, 30]
alist.append(40)

alist —>| 10 | 20 | 30 | 40
(10, 20, 30, 40]

Building Up Lists

e Can add elements to end of list with .append

alist = [10, 20, 30]
alist.append(40)
alist.append(50)

alist —>| 10 | 20 | 30 | 20 | s0
[10, 20, 30, 40, 50]

Building Up Lists

e Can add elements to end of list with .append

alist = [10, 20, 30]
alist.append(40)
alist.append(50)

new list = []

new_list == cmpty list

]

alist =—p»| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

e Can add elements to end of list with .append

alist = [10, 20, 30]
alist.append(40)
alist.append(50)

new list = []

new list.append('a’)

new list =—p| '3’

[‘a’]

alist =—p»| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

e Can add elements to end of list with .append

alist = [10, 20, 30]
alist.append(40)
alist.append(50)

new list = []

new list.append('a’)
new list.append(4.3)

new list =—p| 'a' | 4.3
['a', 4.3]
alist =—p»| 10 20 30 40 50

[10, 20, 30, 40, 50

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist=—>| 10 | 20 | 30 | 40 | s0
[10, 20, 30, 40, 50]

Removing Elements from Lists

 Can remove elements from end of list with .pop

— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
X = alist.pop()

50
alist —>»| 10 20 30 40

(10, 20, 30, 40]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
X = alist.pop()
Xx = alist.pop()

X —— 40
40
alist —>| 10 | 20 [30
[10, 20, 30]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
X = alist.pop()
Xx = alist.pop()
Xx = alist.pop()

X m—pl 30
30

alist —»| 10 20
[10, 20]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
X = alist.pop()
Xx = alist.pop()
Xx = alist.pop()
X = alist.pop()

X m—| 20
20

alist —p»| 10
[10]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
X = alist.pop()
= alist.pop()
= alist.pop()
= alist.pop()

B B

= alist.pop()

X =— 10
10

alist =—> cmpty list
[]

Removing Elements from Lists

 Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

X = alist.pop()
What is we did one more?

Xx = alist.pop() .
x = alist.pop() — _ alist.pop() .
, IndexError: pop from empty list
Xx = alist.pop()
= alist. .
¥ = alist.pop() Don't do it!
X m—| 10 There might be
10 children watching!!

alist = cmpty list
[]

@\ (" /

\
\
-
4.
A 9 0 o
R Fj
s SH R0
a

More Fun With Lists

 Canlgetacouple new lists, please?
num list = [1, 2, 3, 4]
str list = ['Leia’', 'Luke’', 'Han']

* Printing lists (here, we show using the console):
>>> print(num_list)
[1, 2, 3, 4]
>>> print(str_list)
['Leia', 'Luke', 'Han']
* Check to see if list is empty (empty list is like "False")
if num list:
print('num list is not empty')

else:
print('num_list is empty')

Even More Fun With Lists

 Canlgetacouple new lists, please?
num list = [1, 2, 3, 4]
str list = ['Leia’', 'Luke’', 'Han']

 Check to see if a list contains an element:
x =1
if x in num list:
do something

* General form of test (evaluates to a Boolean):

element in list

— Returns True if element is a value in list, False otherwise _
— Could use as testin awhile loop too :

List Function Extravaganza (part 1)!

* Function: mylist.pop (index) # pop can take
parameter

— Removes (and returns) an returns element at specified index

>>> fun_list = [‘a’, ‘b’, ‘c’, ‘d’]
>>> fun list.pop(2)
lcl

>>> fun list
[laI, lbI, ldI]

* Function: mylist. remove (elem)

— Removes (and returns) first occurrence of element in list
>>> another list = ['a’, 'b', 'b', 'ec']
>>> another list.remove('b')

>>> another list

[IaI, IbI, IcI]

— ValueError if you try to remove an element that isn't in list

List Function Extravaganza (part 2)!

* Function: mylist.extend (other list)

— Adds all element from other list to list that function is called on
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> listl.extend(list2)

>>> listl

[1, 2, 3, 4, 5]
« append is not the same as extend

— Append adds a single element, extends merges a list onto another
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]

>>> listl.append(list2)
>>> listl

[1, 2, 3, [4, 5]]

List Function Extravaganza (part 3)!

* Using + operator on lists works like extend, but

creates a new list. Original lists are unchanged.
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> list3 = listl + list2

>>> list3

[1, 2, 3, 4, 5]

* Can use += operator just like extend
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]
>>> listl += list2
>>> listl
[1, 2, 3, 4, 5]

List Function Extravaganza (part 4)!

* Function: mylist. index (elem)

— Returns index of first element in list that matches parameter elem

>>> alist = ['a', 'b', 'b', '¢']
>>> 1 = alist.index('b"’)

>>> i

1

— ValueError if you ask for index of an element that isn't in list
* Function: list. insert (index, elem)

— Inserts elem at the given index. Shifts all other elements down.

>>> jedi = ['luke’', 'obiwan']
>>> jedi.insert(l, 'rey')
>>> jedi

['luke', 'rey', 'obiwan']

— Don't give up on your dreames...

List Function Extravaganza (part 5)!

* Function: mylist.copy () (or list(mylist))

— Returns a copy of the list

>>> actual_jedi = ['luke', 'obiwan']
>>> fantasy = actual jedi.copy()

>>> fantasy

['luke’', 'obiwan']

>>> fantasy.insert(l, 'jar jar')

>>> fantasy

['luke', 'jar jar', 'obiwan']

>>> actual jedi

['luke’', 'obiwan']

List Function Extravaganza (part 6)!

reals = [3.6, 2.9, 8.0, -3.2, 0.5]

* Function: max(mylist)
— Returns maximal value in the list

>>> max(reals)
8.0

* Function: min(mylist)
— Returns minimal value in the list
>>> min(reals)
-3.2

* Function: sum(mylist)

— Returns sum of the values in the list
>>> sum(reals)

11.8

Looping Through List Elements

str list = ['Leia’', 'Luke’', 'Han']
* For loop using range:
for i in range(len(str_list)):

elem = str list[i]

print (elem)

Output:
* For-each loop: Leia
for elem in str list: Luke
print (elem) Han

* These loops both iterate over all elements of the list
— Variable elem is set to each value in list (in order)
— Similar to when you iterated through pixels in images

Looping Through List Elements

* General form of for-each loop:

for element in collection:

do something with element

e element can be any variable you want to use to refer to

items in the collection
— On each iteration through the loop, element will be set to be
the next item (in order) in the collection

— Recall, example:
for elem in str list:

print (elem)
— Lists are collections
— Images are also collections (of pixels)
— We'll see other kinds of collections later in course

When Passed as Parameters

Variables that act like Variables that act like
they are copied. their URL is copied.
(called "immutable") (called "mutable")

integer canvas

float pixel

Boolean SimpleImage

string list
These types are called These types are called
"immutable”. You get copies "mutable". You get reference
of values for parameters. (URL) for parameters. They are

changed in place when you .

assign.

Lists as Parameters |

 When you pass a list as a parameter you are passing a
reference to the actual list (not a copy)

— It's like getting a URL to the list (pass-by-reference)

— In function, changes to values in list persist after function ends

def add_five(num list):
for i in range(len(num list)):
num list[i] += 5
def main():
values = [5, 6, 7, 8]
add_five(values)
print (values)

Output|[10, 11, 12, 13]

Lists as Parameters Il

e But, watch out if you create a new list in a function

— Creating a new list means you're no longer dealing with list
passed in as parameter

— It's like the URL you are using is pointing to a different page
— At that point you are no longer changing parameter passed in

def create new list(num list):
num list.append(9)
num list = [1, 2, 3]

def main():
values = [5, 6, 7, 8]
create new list(values)
print (values)

OUtpUt [5, 6, 7, 8, 9]

Note on Loops and Lists

For loop using range:
for i in range(len(mylist)):
mylist[i] += 1 # Modifying list in place

For-each loop:

for elem in mylist: # Modifying local variable

elem += 1 # elem. If elem is primitive
type, not changing list!

Often use for loop with range when modifying
elements of list (when elements are primitive types)

Often use for-each loop when not modifying elements
of list or when elements are not primitive types :

Putting 1t all together:
averagescores.py

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists
3. Understand how lists work as parameters

