More Lists

Chris Gregg
Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

- '

Housekeeping

%

-

Assignment #3 due tomorrow

Assignment #4 going out today
Chris’s Ask Me Anything:

On Zoom:
— Chris AMA: July 15th, 11:30-12:30pm

Swapping Elements in a List - Sad

def swap elements buggy(eleml, elem2):
temp = eleml
eleml = elem2
elem2 = temp

def main():
my list = [10, 20, 30]
swap elements buggy(my list[0], my list[1])
print(my list)

Output: | [10, 20, 30]

Swapping Elements in a List - Happy

def swap elements working(alist, indexl, index2):
temp = alist[indexl1]
alist[indexl] = alist[index2]
alist[index2] = temp

def main():
my list = [10, 20, 30]
swap elements working(my list, 0, 1)

print(my list)

Output: | [20, 10, 30]

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Slices

What are Slices?

e Can cut up lists into "slices"

— Slices are just sub-portions of lists
— Slices are also lists themselves

— Slicing creates a new list

 Example:
alist = [|a|, 'b', |c|, |d|, |e|, 'f']
alist_> lal lbl lcl ldl lel Ifl
0 1 2 3 4 5

aslice = alist[2:4]

aslice—| '¢«' | 'q’

0 1

What are Slices?

e Can cut up lists into "slices"

— Slices are just sub-portions of lists
— Slices are also lists themselves

— Slicing creates a new list

 Example:
alist = [|a|, 'b', |c|, |d|, |e|, 'f']
alist_> lal lbl lcl ldl lel Ifl
0 1 2 3 4 5

aslice = alist[2:4]

aslice—| 'yx' | 'q"

aslice[0] = 'x

General Form of Slice

 General form to get a slice
list[start: end]

— Produces a new list with elements from list starting at index
start up to (but not including) index end

 Example:
alist = ['a', 'b', 'c', 'd', 'e', "f£']

alist —| 'a’' | 'b' | 'e¢' ['a' | ‘e’ | "£' 1
o0 1 12 1 3 0 41 5 1 g
A I DV 1P I '

alist[2:4] - ['c', 'd"]

alist[1:6] — ['b', 'c¢', 'd', 'e',

alist[0:3] — ['a', 'b', 'c']

I'll Take Another Slicel

 General form to get a slice

list[start: end]

— If start is missing, default to use O in its place
— If end is missing, default to use 1len (list) in its place
— Can also use negative indexes for start/end

Mo Ps P s Do]

alist—> Ial Ibl Ic ldl] lfl
0Lt e s

alist[2:-2] —> ['ec¢', 'd']

alist[-2:] - ['e', "f']

alist[:-1] - ['a', 'b', 'e¢', 'd’,

alist[:] -> ['a', 'b', 'ec', 'd',

Advanced Slices

* General form to get a slice, with a step
list[start: end : step]

— Take slice from start to end, progressing by step
— Step can be negative (go backwards, so start/end are flipped)

6 s a3 N N

alist—} lal Ibl Icl ldl lel lfl

O s
alist[1:5:2] —»> ['b', 'd’']
alist[::2] - ['a', '¢', 'e']
alist[4:1:-1] > ['e', 'd', '¢'] # note start
alist[1l:4:-1] > []
alist[::-1] - ['f', 'e', 'd', 'e', 'b', 'a']

Loops and Slices

* Can use for-each loop with slice

— Slice is just a list, so you can use it just like a list
— Recall loops with lists:

for i in range(len(list)):

do something with list[i]

for elem in list:
do something with elem

Loops and Slices

* Can use for-each loop with slice

— Slice is just a list, so you can use it just like a list
— Now, for loops with slices (note: step is optional)

for i in range(start, end, step):

do something with list[i]

for elem in list[start:end:step]:
do something with elem

e Remember: if step is negative, then start should
be greater than end

Deleting with Slices

* You can delete elements in a list with del

 Example:
>>> num list = [50, 30, 40, 60, 90, 80]
>>> del num list[1]
>>> num_ list
[50, 40, 60, 90, 80]

 Can use del with slice notation:
>>> num list = [50, 30, 40, 60, 90, 80]
>>> del num list[1:4]

>>> num_ list
[50, 90, 80]

Changing a List in Place

* Python provides some operations on whole list
— These functions modify list in place (doesn't create new list)

* Function: list. reverse ()

— Reverses order of elements in the list
>>> fun list = [6, 3, 12, 4]
>>> fun list.reverse()

>>> fun list

[4, 12, 3, 6]

* Function: list. sort ()

— Sorts the elements of the list in increasing order
>>> fun list = [6, 3, 12, 4]

>>> fun list.sort()

>>> fun list

[3, 4, 6, 12]

2-Dimensional
Lists

2-Dimensional List

* You can have a list of lists!

— Each element of "outer"” list is just another list
— Can think of this like a grid

 Example:
grid = [[1, 2], [3, 4], [5, 6]]
grid —| [1, 2] [3, 4] [5, 6]
0 1 2

e Can be easier to think of like this:

grid —| [1, 2] 0
[3, 4]]
[5, 6] 2

2-Dimensional List

grid —| [1, 2] 0
[3, 4]
[5, 6] 2

* Um, can you zoom in on that...

grid — 112 0
0 1
4 1
1
6 2
0

2-Dimensional List

grid — 112
0 1

4

1

51| 6

0 1

2

grid[0] [O]
1

grid[0] [1]
2

grid[1] [0]
3

grid[1][1]
4

grid[2] [0]
5

grid[2] [1]
6

* To access elements, specify index in "outer" list, then
index in "inner" list

grid[0][0]
grid[1][0]
grid[2][1]

- 1
- 3
— 6

2-Dimensional List

grid — 112 0
0
il I
5| 6 "
0 1
 So what if | only specify one index?
grid[0] - [1, 2]
grid[1] - [3, 4]
grid[2] — [5, 6]

* Remember, grid is just a list of lists
— Elements of "outer" list are just lists

Getting Funky With Lists

e Do the inner lists all have to be the same size?

— No! Just be careful if they are not.
jagged = [[1, 2, 3], [4], [5, 6]]

jagged[0] - [1, 2, 3]
jagged[1] — [4]
jagged[2] — [5, 6]

e Can | have more than two dimensions?

— Sure! You can have as many as you like (within reason).
cube = [[[1, 2], [3, 411, [[5, 61, [7, 8]1]]
cube[0] - [[1, 2], [3, 4]]
cube[0][1] - [3, 4]

cube[0][1][0] —» 3

Swapping Elements in a Grid

def swap(grid, rowl, coll, row2, col2):
temp = grid[rowl][coll]
grid[rowl][coll] = grid[row2][co0l2]
grid[row2][col2] = temp

def main():
my grid = [[10, 20, 30], [40, 50, 60]]
swap (my grid, 0, 1, 1, 2)
print (my grid)

Output: | [[10, 60, 30], [40, 50, 20]]

Looping Through a List of Lists

def main():
grid = [[10, 20], [40], [70, 80, 100]]
rows = len(grid)
for row in range(rows):
cols = len(grid[row])
for col in range(cols):
print (f"grid[{row}][{col}] = {grid[row][col]}")

Output: [grid[0][0] = 10
grid[0][1] = 20
grid[1][0] = 40
grid[2][0] = 70
grid[2][1] = 80
grid[2][2] = 100

Simplified With a True Grid

def main():
grid = [[1, 2], [10, 11], [20, 21]]
rows = len(grid)
cols = len(grid[0])
for row in range(rows):
for col in range(cols):
print (f"grid[{row}][{col}] = {grid[row][col]}")

Output: [grid[0][0] =1
grid[0][1l] = 2
grid[1l][0] = 10
grid[1l][1l] = 11
grid[2][0] = 20
grid[2][1] = 21

Using For-Each With 2-D List

def main():
grid = [[10, 20], [40], [70, 80, 100]]
for row in grid:
for col in row:
print (col)

Output: (10
20
40
70
80
100

Creating a 2-D List

def create grid(rows, cols, value):

grid = [] # Create empty grid
for y in range(rows): # Make rows one by one
row = []
for x in range(cols): # Build up each row

row.append(value) # by appending to list

grid.append (row) # Append row (list)
onto grid
return grid

Console:

>>> create grid(2, 4, 1)
rr1, 1, 1, 11, 1, 1, 1, 1]]
>>> create grid(3, 2, 5)
[[5, 51, [5, 5], [5, 51]

Putting 1t all together:
tictactoe.py

(This program give you practice
with a lot of concepts!)

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

