
More Lists
Chris Gregg

Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping

• Assignment #3 due tomorrow
• Assignment #4 going out today
• Chris’s Ask Me Anything:
• On Zoom:
– Chris AMA: July 15th, 11:30-12:30pm

Swapping Elements in a List - Sad
def swap_elements_buggy(elem1, elem2):

temp = elem1
elem1 = elem2
elem2 = temp

def main():
my_list = [10, 20, 30]
swap_elements_buggy(my_list[0], my_list[1])
print(my_list)

[10, 20, 30]Output:

Swapping Elements in a List - Happy
def swap_elements_working(alist, index1, index2):

temp = alist[index1]
alist[index1] = alist[index2]
alist[index2] = temp

def main():
my_list = [10, 20, 30]
swap_elements_working(my_list, 0, 1)
print(my_list)

[20, 10, 30]Output:

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Slices

What are Slices?

• Can cut up lists into "slices"
– Slices are just sub-portions of lists
– Slices are also lists themselves
– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'c' 'd'

0 1

aslice

What are Slices?

• Can cut up lists into "slices"
– Slices are just sub-portions of lists
– Slices are also lists themselves
– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

aslice[0] = 'x'

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'x' 'd'

0 1

aslice

General Form of Slice

• General form to get a slice
list[start:end]
– Produces a new list with elements from list starting at index
start up to (but not including) index end

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

alist[2:4] ® ['c', 'd']
alist[1:6] ® ['b', 'c', 'd', 'e', 'f']
alist[0:3] ® ['a', 'b', 'c']

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5
alist

6

I'll Take Another Slice!

• General form to get a slice
list[start:end]
– If start is missing, default to use 0 in its place
– If end is missing, default to use len(list) in its place
– Can also use negative indexes for start/end

alist[2:-2] ® ['c', 'd']
alist[-2:] ® ['e', 'f']
alist[:-1] ® ['a', 'b', 'c', 'd', 'e']
alist[:] ® ['a', 'b', 'c', 'd', 'e', 'f']

-6 -5 -4 -3 -2 -1
'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5
alist

Advanced Slices

• General form to get a slice, with a step
list[start:end:step]
– Take slice from start to end, progressing by step
– step can be negative (go backwards, so start/end are flipped)

alist[1:5:2] ® ['b', 'd']
alist[::2] ® ['a', 'c', 'e']
alist[4:1:-1] ® ['e', 'd', 'c'] # note start
alist[1:4:-1] ® []
alist[::-1] ® ['f', 'e', 'd', 'c', 'b', 'a']

-6 -5 -4 -3 -2 -1
'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5
alist

Loops and Slices

• Can use for-each loop with slice
– Slice is just a list, so you can use it just like a list
– Recall loops with lists:

for i in range(len(list)):
do something with list[i]

for elem in list:
do something with elem

Loops and Slices

• Can use for-each loop with slice
– Slice is just a list, so you can use it just like a list
– Now, for loops with slices (note: step is optional)

for i in range(start, end, step):
do something with list[i]

for elem in list[start:end:step]:
do something with elem

• Remember: if step is negative, then start should
be greater than end

Deleting with Slices

• You can delete elements in a list with del
• Example:

>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1]
>>> num_list
[50, 40, 60, 90, 80]

• Can use del with slice notation:
>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1:4]
>>> num_list
[50, 90, 80]

Changing a List in Place
• Python provides some operations on whole list
– These functions modify list in place (doesn't create new list)

• Function: list.reverse()
– Reverses order of elements in the list
>>> fun_list = [6, 3, 12, 4]
>>> fun_list.reverse()
>>> fun_list
[4, 12, 3, 6]

• Function: list.sort()
– Sorts the elements of the list in increasing order
>>> fun_list = [6, 3, 12, 4]
>>> fun_list.sort()
>>> fun_list
[3, 4, 6, 12]

2-Dimensional
Lists

2-Dimensional List

• You can have a list of lists!
– Each element of "outer" list is just another list
– Can think of this like a grid

• Example:
grid = [[1, 2], [3, 4], [5, 6]]

• Can be easier to think of like this:

[1, 2] [3, 4] [5, 6]

0 1 2

grid

grid [1, 2] 0
[3, 4] 1
[5, 6] 2

2-Dimensional List

• Um, can you zoom in on that…

grid [1, 2] 0
[3, 4] 1
[5, 6] 2

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

2-Dimensional List

• To access elements, specify index in "outer" list, then
index in "inner" list
grid[0][0] ® 1
grid[1][0] ® 3
grid[2][1] ® 6

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

grid[0][0]
1

grid[0][1]
2

grid[1][0]
3

grid[1][1]
4

grid[2][0]
5

grid[2][1]
6

2-Dimensional List

• So what if I only specify one index?
grid[0] ® [1, 2]
grid[1] ® [3, 4]
grid[2] ® [5, 6]

• Remember, grid is just a list of lists
– Elements of "outer" list are just lists

grid 1 2

0 1

3 4

0 1

5 6

0 1

0

1

2

Getting Funky With Lists
• Do the inner lists all have to be the same size?
– No! Just be careful if they are not.
jagged = [[1, 2, 3], [4], [5, 6]]
jagged[0] ® [1, 2, 3]
jagged[1] ® [4]
jagged[2] ® [5, 6]

• Can I have more than two dimensions?
– Sure! You can have as many as you like (within reason).
cube = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
cube[0] ® [[1, 2], [3, 4]]
cube[0][1] ® [3, 4]
cube[0][1][0] ® 3

Swapping Elements in a Grid
def swap(grid, row1, col1, row2, col2):

temp = grid[row1][col1]
grid[row1][col1] = grid[row2][col2]
grid[row2][col2] = temp

def main():
my_grid = [[10, 20, 30], [40, 50, 60]]
swap (my_grid, 0, 1, 1, 2)
print(my_grid)

[[10, 60, 30], [40, 50, 20]]Output:

def main():
grid = [[10, 20], [40], [70, 80, 100]]
rows = len(grid)
for row in range(rows):

cols = len(grid[row])
for col in range(cols):

print(f"grid[{row}][{col}] = {grid[row][col]}")

Looping Through a List of Lists

grid[0][0] = 10
grid[0][1] = 20
grid[1][0] = 40
grid[2][0] = 70
grid[2][1] = 80
grid[2][2] = 100

Output:

def main():
grid = [[1, 2], [10, 11], [20, 21]]
rows = len(grid)
cols = len(grid[0])
for row in range(rows):

for col in range(cols):
print(f"grid[{row}][{col}] = {grid[row][col]}")

Simplified With a True Grid

grid[0][0] = 1
grid[0][1] = 2
grid[1][0] = 10
grid[1][1] = 11
grid[2][0] = 20
grid[2][1] = 21

Output:

def main():
grid = [[10, 20], [40], [70, 80, 100]]
for row in grid:

for col in row:
print(col)

Using For-Each With 2-D List

10
20
40
70
80
100

Output:

def create_grid(rows, cols, value):
grid = [] # Create empty grid
for y in range(rows): # Make rows one by one

row = []
for x in range(cols): # Build up each row

row.append(value) # by appending to list

grid.append(row) # Append row (list)
onto grid

return grid

Creating a 2-D List

>>> create_grid(2, 4, 1)
[[1, 1, 1, 1], [1, 1, 1, 1]]
>>> create_grid(3, 2, 5)
[[5, 5], [5, 5], [5, 5]]

Console:

Putting it all together:
tictactoe.py

(This program give you practice
with a lot of concepts!)

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

[

]

[, , ,],
[, , ,],
[, , ,]

