
Dictionaries
Chris Gregg

Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Review of String
PUNCTUATION = '.!?,-:;'

def delete_punctuation(s):
"""
Removes punctuation characters from a string and
returns the resulting string.
"""
result = ''
for char in s:

Check char is not a punctuation mark
if char not in PUNCTUATION:

result += char # append non-punctuation chars

return result

>>> delete_punctuation('REMOVE --the-- punctuation!!!!')
'REMOVE the punctuation'

Console:

Reading Lines from a File
def count_words(filename):

count = 0
with open(filename, 'r') as file: # Open file to read

for line in file:
line = line[:-1] # Remove newline
word_list = line.split() # Create list of words
for word in word_list: # Print words

print(f"#{count}: {word}")
count += 1

print(f"{filename} contains {count} words")

Very few
words here.

testfile.txt

#0: Very
#1: few
#2: words
#3: here.
testfile.txt contains 4 words

Console:

Learning Goals

1. Learning about dictionaries
2. Building programs using dictionaries

Dictionaries

What are Dictionaries?

• Dictionaries associate a key with a value
– Key is a unique identifier
– Value is something we associate with that key

• Examples in the real world:
– Phonebook

• Keys: names
• Values: phone numbers

– Dictionary
• Keys: words
• Values: word definitions

– US Government
• Keys: Social Security number
• Values: Information about an individual's employment

Dictionaries in Python

• Creating dictionaries
– Dictionary start/end with braces
– Key:Value pairs separated by colon
– Each pair is separated by a comma

ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}
squares = {2: 4, 3: 9, 4: 16, 5: 25}
phone = {'Pat': '555-1212', 'Jenny': '867-5309'}

empty_dict = {}

ages 'Chris' 48

'Wil' 23

'Snoopy' 52

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 48
ages[‘Snoopy'] is 52

ages 'Chris' 48

'Wil' 23

'Snoopy' 52

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 48
ages[‘Snoopy'] is 52

• Can set values like regular variable:
ages['Snoopy'] = 18

ages 'Chris' 48

'Wil' 23

'Snoopy' 18

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Like a set of variables that are indexed by keys

• Use key to access associated value:
ages['Chris'] is 48
ages['Snoopy'] is 52

• Can set values like regular variable:
ages['Snoopy'] = 18
ages['Snoopy’] -= 13

ages 'Chris' 48

'Wil' 23

'Snoopy' 5

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Like a set of variables that are indexed by keys

• Good and bad times with accessing pairs:
>>> wils_age = ages['Wil']
>>> wils_age
23
>>> santas_age = ages['Santa Claus']
KeyError: 'Santa Claus'

ages 'Chris' 48

'Wil' 23

'Snoopy' 52

Accessing Elements of Dictionary

• Consider the following dictionary:
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Like a set of variables that are indexed by keys

• Checking membership
>>> 'Wil' in ages
True
>>> 'Santa Claus' not in ages
True

ages 'Chris' 48

'Wil' 23

'Snoopy' 52

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone Empty dictionary

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'

phone 'Pat' '555-1212'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'
phone['Jenny'] = '867-5309'

phone 'Pat' '555-1212'

'Jenny' '867-5309'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'
phone['Jenny'] = '867-5309'
phone['Pat'] = None

phone 'Pat' None

'Jenny' '867-5309'

Adding Elements to Dictionary

• Can add pairs to a dictionary:
phone = {}

phone['Pat'] = '555-1212'
phone['Jenny'] = '867-5309'
phone['Pat'] = None
phone['Pat'] = '867-5309'

phone 'Pat' '867-5309'

'Jenny' '867-5309'

A Word About Keys/Values

• Keys must be immutable types
– E.g., int, float, string
– Keys cannot be changed in place
– If you want to change a key, need to remove key/value pair

from dictionary and then add key/value pair with new key.

• Values can be mutable or immutable types
– E.g., int, float, string, lists, dictionaries
– Values can be changed in place

• Dictionaries are mutable
– Changes made to a dictionary in a function persist after the

function is done.

Changing List in a Function
def have_birthday(dict, name):

print(f"You're one year older, {name}!")
dict[name] += 1

def main():
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}
print(ages)
have_birthday(ages, 'Chris')
print(ages)
have_birthday(ages, ‘Snoopy')
print(ages)

{'Chris': 48, 'Wil': 23, 'Snoopy': 52}
You're one year older, Chris!
{'Chris’: 49, 'Wil': 23, 'Snoopy': 52}
You're one year older, Snoopy!
{'Chris’: 49, 'Wil': 23, ‘Snoopy’: 53}

Terminal:

Dictiona-palooza! (Part 1)
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Function: dict.get(key)
– Returns value associated with key in dictionary. Returns None if

key doesn't exist.
>>> print(ages.get('Chris'))
48
>>> print(ages.get('Santa Claus'))
None

• Function: dict.get(key, default)
– Returns value associated with key in dictionary. Returns default if

key doesn't exist.
>>> print(ages.get('Chris', 100))
48
>>> print(ages.get('Santa Claus', 100))
100

Dictiona-palooza! (Part 2)
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Function: dict.keys()
– Returns something similar to a range of the keys in dictionary
– Can use that to loop over all keys in a dictionary:

for key in ages.keys():
print(f"{key}, {ages[key]}")

– Can turn keys() into a list, using the list function
>>> list(ages.keys())
['Chris', 'Wil', ‘Snoopy']

Chris, 48
Wil, 23
Snoopy, 52

Terminal:

Dictiona-palooza! (Part 3)
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Can also loop over a dictionary using for-each loop just
using name of dictionary:

for key in ages:
print(f"{key}, {ages[key]}")

Chris, 48
Wil, 23
Snoopy, 52

Terminal:

Dictiona-palooza! (Part 4)
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Function: dict.values()
– Returns something similar to a range of the values in dictionary
– Can use that to loop over all keys in a dictionary:

for value in ages.values():
print(value)

– Can turn values() into a list, using the list function
>>> list(ages.values())
[48, 23, 52]

48
23
52

Terminal:

Dictiona-palooza! (Part 5)
ages = {'Chris’: 48, 'Wil': 23, 'Snoopy': 52}

• Function: dict.pop(key)
– Removes key/value pair with the given key. Returns value from

that key/value pair.
>>> ages
>>> {'Chris': 48, 'Wil': 23, 'Snoopy': 52}
>>> ages.pop('Snoopy')
52
>>> ages
{'Chris': 48, 'Wil': 23}

• Function: dict.clear()
– Removes all key/value pairs in the dictionary.
>>> ages.clear()
>>> ages
{}

Functions You Can Apply
ages = {'Chris': 48, 'Wil': 23, 'Snoopy': 52}

• Function: len(dict)
– Returns number of key/value pairs in the dictionary
>>> ages
{'Chris': 48, 'Wil': 23, 'Snoopy': 52}
>>> len(ages)
3

• Function: del dict[key]
– Removes key/value pairs in the dictionary.
– Similar to pop, but doesn't return anything.
>>> ages
{'Chris': 48, 'Wil': 23, 'Snoopy': 52}
>>> del ages['Snoopy']
>>> ages
{'Chris': 48, 'Wil': 23}

Putting it all together:
count_each_word.py

(And we'll also throw in files
as a bonus concept!)

Bonus fun:
phonebook.py

Learning Goals

1. Learning about dictionaries
2. Building programs using dictionaries

{'breakfast': ,

'lunch': ,

'dinner': }

