Tuples + Sorting

Chris Gregg
Based on slides by Chris Piech and Mehran
Sahami
CS106A, Stanford University

* "., {‘—-
5 ‘::: e”
134 Ty, »
) ? 7
"-‘,‘ ! .
T

Housekeeping

"K;./

 YEAH Hours and bonus tips video posted for
Assignment 5

* There will be another YEAH hours live on Friday (check
Ed for details)

https://us.edstem.org/courses/669/discussion/94337

Learning Goals

1. Learning about tuples in Python
2. Writing code using tuples
3. Learning about sorting

Tuples

What is a Tuple?

* Atuple is way to keep track of an ordered collection of
items

— Similar to a list, but immutable (can't be changed in place)

— Ordered: can refer to elements by their position
— Collection: list can contain multiple items

e Often used to keep track of data that are conceptually
related, such as
— Coordinates for a point: (x, y)
— RGB values for a color: (red, green, blue)
— Elements of an address: (street, city, state, zipcode)

* Can be used to return multiple values from a function_

Show Me the Tuples!

* Creating tuples
— Tuples start/end with parentheses. Elements separated by
commas.
my tuple = (1, 2, 3)
point = (4.7, -6.0)
strs = ('strings’', 'in', 'tuple')
addr = ('102 Ray Ln', 'Stanford', 'CA', 94305)
empty tuple = ()

* If you want a tuple with one element, you must use a

comma to create it (otherwise it is just the element):
>>> tuple one = (1,) y

>>> type(tuple_ one) |
<class 'tuple'>

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', '¢', 'd', 'e')

* Access elements of tuple just like a list:

— Indexes start from O

letters — ‘a’ ‘b’ ‘¢ ‘d’ ‘e’
0 1 2 3 4
e Access individual elements:
letters[0] is 'a’
letters[4] is 'e'

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', '¢', 'd', 'e')

* Access elements of tuple just like a list:

— Indexes start from O

letters — ‘a’ 'b’ 'c' 'd’ ‘e’

0 1 2 3 4
* Cannot assign to individual elements:

— Tuples are immutable
letters[0] = 'x'

TypeError: 'tuple’' object does not support
item assignment

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', '¢', 'd', 'e')

* Access elements of tuple just like a list:

— Indexes start from O

letters — 'a' 'b’ ‘¢ 'd’ ‘e’
0 1 2 3 4
* Cannot assign to individual elements:

— Tuples are immutable

— Also, there are no append/pop functions for tuples
— Tuples cannot be changed in place
— To change, need to create new tuple and overwrite variable

Gelting Length of a Tuple

* Consider the following tuple:
letters = ('a', 'b', '¢', 'd', 'e')
* Can get length of tuple with 1en function:

len(letters) is 5
— Elements of list are indexed from 0 to length — 1

* Using length to loop through a tuple:

for i in range(len(letters)):
print (£f"{i} -> {letters[i]}")

o —>

|
\'
(I © P o T o i)

1
2
3 >
4

Indexes and Slices

* Consider the following tuple:
letters = ('a', 'b', '¢', 'd', 'e')
* Negative indexes in tuple work just the same as lists
— Work back from end of tuple

— Example:
letters[-1] is 'e'

* Slices work on tuples in the same was as on lists
>>> aslice = letters[2:4]

>>> aslice
(IcI, ldl)

aslice—| '«' | 'q"

Good Times with Tuples

* More tuple examples:
chartreuse_rgb = (127, 255, 0)

stanford = ('450 Jane Stanford Way', 'Stanford’', 'CA’,
94305)

* Printing tuples:
>>> print(chartreuse_ rgb)
(127, 255, 0)
>>> print(stanford)

('450 Jane Stanford Way', 'Stanford’', 'CA’',
94305)

* Check if tuple is empty (empty tuple is like "False")

if stanford:
print('stanford is not empty')
else:

nrintl "'ckFanfard 1iec amnt+xr')

More Good Times with Tuples

* More tuple examples:
chartreuse_rgb = (127, 255, 0)

stanford = ('450 Jane Stanford Way', 'Stanford’', 'CA’,
94305)

* Check to see if a tuple contains an element:

state = 'CA’
if state in stanford:
do something

* General form of test (evaluates to a Boolean):

element in tuple

— Returns True if element is a value in tuple, False otherwise

— Can also test if element is not in tuple using not in

A Few Tuple Functions

chartreuse rgb = (127, 255, 0)

* Function: max (chartreuse rgb)

— Returns maximal value in the tuple
>>> max (chartreuse_rgb)
255

* Function: min(chartreuse rgb)

— Returns minimal value in the tuple
>>> min(chartreuse rgb)

0
* Function: sum(chartreuse rgb)

— Returns sum of the values in the tuple
>>> sum(chartreuse_rgb)

382

Looping Through Tuple Elements

stanford = ('450 Jane Stanford Way', 'Stanford’', 'CA’,
94305)

* For loop using range:
for i in range(len(stanford)):

elem = stanford[i] Output:
: 450 Jane Stanford Way
print (elem) Stanford
CA
* For-each loop: 94305

for elem in stanford:
print (elem)

* These loops both iterate over all elements of the tuple
— Variable elem is set to each value in tuple (in order) sm

— Works just the same as iterating through a list

Tuples as Parameters

 When you pass a tuple as a parameter, think of it like
passing an integer
— In function, changing tuple parameter is changing a copy
def remove red(rgb_ tuple):

rgb tuple = (0, rgb tuple[l], rgb tuple[2])
print (£"In remove red: {rgb tuple}")

def main():
chartreuse rgb = (127, 255, 0)
remove red(chartreuse_rgb)
print (£"In main: {chartreuse rgb}")

Output: |In remove_red: (0, 255, 0)
In main: (127, 255, 0)

Assignment with Tuples

* Can use tuples to assign multiple variables at once:

— Number of variables on left-hand side of assignment needs
to be the same as the size of the tuple on the right-hand side

>>> (x, ¥) = (3, 4)
>>> X

3
>>> y

4

- You don’t even need parentheses — the tuple is implied:
>>> X, Yy =y, x # swap x and y

>>> x L |
4

>>> y

3

Returning Tuples from Functions

e Can use tuples to return multiple values from function

— Stylistic point: values returned should make sense as
something that is grouped together (e.g., (x, y) coordinate)

def

def

get _date():

day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

main():
(dd, mm, yyyy) = get_date()
print (£" {mm}/{dd}/{yyyy}")

Terminal:

Day (DD): 10
Month (MM): 05
Year (YYYY): 1970
5/10/1970

Returning Tuples from Functions

e Can use tuples to return multiple values from function

— Stylistic point: values returned should make sense as
something that is grouped together (e.g., (x, y) coordinate)

def get date():
day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

def main():
(dd, mm, yyyy) = get_date()
print (£" {mm}/{dd}/{yyyy}")

— Note: all paths through a function should return a tuple of the
same length, otherwise program might crash

— For functions that return tuples, comment should specify the
number of return values (and their types)

Tuples and Lists

e Can create lists from tuples using 1ist function:

>>> my tuple = (10, 20, 30, 40, 50)
>>> my list = list(my_tuple)

>>> my list

[10, 20, 30, 40, 50]

e Can create tuples from lists using tuple function:

>>> a _list = ['summer’', 'of', 2020]
>>> a_tuple = tuple(a_list)

>>> a tuple

(‘summer', 'of', 2020)

Tuples and Dictionaries

e Can get key/value pairs from dictionaries as tuples
using the items functions:
>>> dict = {'a':1, 'b':2, '¢':3, 'd':4}
>>> list(dict.items())
[('a’, 1), ('b', 2), ('c¢’y, 3), ('d’, 4)]

* Can loop though key/value pairs as tuples:

for key, value in dict.items():
print (f" {key} -> {value})

Output:

|
\'
B W N

Q. Q0 O o
|
\'

Tuples in Dictionaries

e Can use tuples as keys in dictionaries:

>>> dict = {('a’,1): 10, ('b’,1): 20, ('a’',2): 30}
>>> list(dict.keys())

[(‘a', 1), ('b', 1), ('a', 2)]

>>> list(dict.values())

[10, 20, 30]

* Can use tuples as values in dictionaries:

>>> colors = { 'orange': (255, 165, 0),
'yellow': (255, 255, 0),
"aqua': (0, 128, 128) }

>>> list(colors.values())

[(255, 165, 0), (255, 255, 0), (0, 128, 128)]

>>> list(colors.keys())

['orange', 'yellow', 'aqua']

Putting 1t all together:
colors.py

Sorting

Basic Sorting

* The sorted function orders elements in a collection in
increasing (non-decreasing) order
— Can sort any type that support < and == operations
— For example: int, float, string
— sorted returns new collection (original collection unchanged)

>>> nums = [8, 42, 4, 8, 15, 16]
>>> sorted(nums)
[4, 8, 8, 15, 16, 42]

>>> nums
[8, 42, 4, 8, 15, 16] # original list not changed
>>> strs = ['banana’', 'zebra', 'apple', 'donut']

>>> sorted(strs)
['apple’, 'banana’, 'donut', 'zebra']

Intermediate Sorting

e Can sort elements in decreasing (non-increasing) order
— Use the optional parameter reverse=True
>>> nums = [8, 42, 4, 8, 15, 16]

>>> sorted(nums, reverse=True)
[42, 16, 15, 8, 8, 4]

>>> strs = ['banana’', 'APPLE', 'apple', 'donut']
>>> sorted(strs, reverse=True)
['donut', 'banana', 'apple', 'APPLE']

* Note case sensitivity of sorting strings!
— Any uppercase letter is less than any lowercase letter

— For example: 'z2' < 'a’

Advanced Sorting

e Sorting using a custom function

— Use the optional parameter key=<function name>

def get _len(s):

return len(s)

def main():
strs = ['a', 'bbbb', 'cc', 'zzzz']
sorted strs = sorted(strs, key=get len)
print (sorted_strs)

Output:

['a', 'cc', 'bbbb', 'zzzz']

Super Deluxe Advanced Sorting

e Sorting a list of tuples with a custom function
— Use the optional parameter key=<function name>

def get_ count (food):
return food[1]

def main():
foods = [('apple', 5), ('banana', 2), ('chocolate', 137)]
sort _names = sorted(foods)
print (sort_ names)
sort _count = sorted(foods, key=get count)

print (sort_count)
rev_sort_count = sorted(foods, key=get count, reverse=True)
print (rev_sort count)

Output:

[('apple’', 5), ('banana', 2), ('chocolate', 137)]
[('banana', 2), ('apple', 5), ('chocolate', 137)]
[('chocolate', 137), ('apple', 5), ('banana’', 2)]

Learning Goals

1. Learning about tuples in Python
2. Writing code using tuples
3. Learning about sorting

