
Tuples + Sorting
Chris Gregg

Based on slides by Chris Piech and Mehran
Sahami

CS106A, Stanford University

Housekeeping

• YEAH Hours and bonus tips video posted for
Assignment 5

• There will be another YEAH hours live on Friday (check
Ed for details)

https://us.edstem.org/courses/669/discussion/94337

Learning Goals
1. Learning about tuples in Python

2. Writing code using tuples
3. Learning about sorting

Tuples

What is a Tuple?
• A tuple is way to keep track of an ordered collection of

items
– Similar to a list, but immutable (can't be changed in place)
– Ordered: can refer to elements by their position
– Collection: list can contain multiple items

• Often used to keep track of data that are conceptually
related, such as
– Coordinates for a point: (x, y)
– RGB values for a color: (red, green, blue)
– Elements of an address: (street, city, state, zipcode)

• Can be used to return multiple values from a function

Show Me the Tuples!

• Creating tuples
– Tuples start/end with parentheses. Elements separated by

commas.
my_tuple = (1, 2, 3)
point = (4.7, -6.0)
strs = ('strings', 'in', 'tuple')
addr = ('102 Ray Ln', 'Stanford', 'CA', 94305)
empty_tuple = ()

• If you want a tuple with one element, you must use a
comma to create it (otherwise it is just the element):
>>> tuple_one = (1,)
>>> type(tuple_one)
<class 'tuple'>

Accessing Elements of Tuple

• Consider the following tuple:
letters = ('a', 'b', 'c', 'd', 'e')

• Access elements of tuple just like a list:
– Indexes start from 0

• Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4
letters

Accessing Elements of Tuple

• Consider the following tuple:
letters = ('a', 'b', 'c', 'd', 'e')

• Access elements of tuple just like a list:
– Indexes start from 0

• Cannot assign to individual elements:
– Tuples are immutable
letters[0] = 'x'
TypeError: 'tuple' object does not support
item assignment

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4
letters

Accessing Elements of Tuple

• Consider the following tuple:
letters = ('a', 'b', 'c', 'd', 'e')

• Access elements of tuple just like a list:
– Indexes start from 0

• Cannot assign to individual elements:
– Tuples are immutable
– Also, there are no append/pop functions for tuples
– Tuples cannot be changed in place
– To change, need to create new tuple and overwrite variable

'a' 'b' 'c' 'd' 'e'

0 1 2 3 4
letters

Getting Length of a Tuple

• Consider the following tuple:
letters = ('a', 'b', 'c', 'd', 'e')

• Can get length of tuple with len function:
len(letters) is 5

– Elements of list are indexed from 0 to length – 1

• Using length to loop through a tuple:
for i in range(len(letters)):

print(f"{i} -> {letters[i]}")

0 -> a
1 -> b
2 -> c
3 -> d
4 -> e

Indexes and Slices

• Consider the following tuple:
letters = ('a', 'b', 'c', 'd', 'e')

• Negative indexes in tuple work just the same as lists
– Work back from end of tuple

– Example:
letters[-1] is 'e'

• Slices work on tuples in the same was as on lists
>>> aslice = letters[2:4]
>>> aslice
('c', 'd')

'c' 'd'

0 1

aslice

Good Times with Tuples

• More tuple examples:
chartreuse_rgb = (127, 255, 0)
stanford = ('450 Jane Stanford Way', 'Stanford', 'CA',

94305)

• Printing tuples:
>>> print(chartreuse_rgb)
(127, 255, 0)
>>> print(stanford)
('450 Jane Stanford Way', 'Stanford', 'CA',

94305)

• Check if tuple is empty (empty tuple is like "False")
if stanford:

print('stanford is not empty')
else:

print('stanford is empty')

More Good Times with Tuples

• More tuple examples:
chartreuse_rgb = (127, 255, 0)
stanford = ('450 Jane Stanford Way', 'Stanford', 'CA',

94305)

• Check to see if a tuple contains an element:
state = 'CA'
if state in stanford:

do something

• General form of test (evaluates to a Boolean):
element in tuple

– Returns True if element is a value in tuple, False otherwise
– Can also test if element is not in tuple using not in

A Few Tuple Functions
chartreuse_rgb = (127, 255, 0)

• Function: max(chartreuse_rgb)
– Returns maximal value in the tuple
>>> max(chartreuse_rgb)
255

• Function: min(chartreuse_rgb)
– Returns minimal value in the tuple
>>> min(chartreuse_rgb)
0

• Function: sum(chartreuse_rgb)
– Returns sum of the values in the tuple
>>> sum(chartreuse_rgb)
382

Looping Through Tuple Elements
stanford = ('450 Jane Stanford Way', 'Stanford', 'CA',
94305)

• For loop using range:
for i in range(len(stanford)):

elem = stanford[i]
print(elem)

• For-each loop:
for elem in stanford:

print(elem)

• These loops both iterate over all elements of the tuple
– Variable elem is set to each value in tuple (in order)
– Works just the same as iterating through a list

450 Jane Stanford Way
Stanford
CA
94305

Output:

Tuples as Parameters

• When you pass a tuple as a parameter, think of it like
passing an integer
– In function, changing tuple parameter is changing a copy

def remove_red(rgb_tuple):
rgb_tuple = (0, rgb_tuple[1], rgb_tuple[2])
print(f"In remove_red: {rgb_tuple}")

def main():
chartreuse_rgb = (127, 255, 0)
remove_red(chartreuse_rgb)
print(f"In main: {chartreuse_rgb}")

In remove_red: (0, 255, 0)
In main: (127, 255, 0)

Output:

Assignment with Tuples

• Can use tuples to assign multiple variables at once:
– Number of variables on left-hand side of assignment needs

to be the same as the size of the tuple on the right-hand side

>>> (x, y) = (3, 4)
>>> x
3
>>> y
4
- You don’t even need parentheses – the tuple is implied:
>>> x, y = y, x # swap x and y
>>> x
4
>>> y
3

Returning Tuples from Functions
• Can use tuples to return multiple values from function
– Stylistic point: values returned should make sense as

something that is grouped together (e.g., (x, y) coordinate)
def get_date():

day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

def main():
(dd, mm, yyyy) = get_date()
print(f"{mm}/{dd}/{yyyy}")

Day (DD): 10
Month (MM): 05
Year (YYYY): 1970
5/10/1970

Terminal:

Returning Tuples from Functions
• Can use tuples to return multiple values from function
– Stylistic point: values returned should make sense as

something that is grouped together (e.g., (x, y) coordinate)
def get_date():

day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

def main():
(dd, mm, yyyy) = get_date()
print(f"{mm}/{dd}/{yyyy}")

– Note: all paths through a function should return a tuple of the
same length, otherwise program might crash

– For functions that return tuples, comment should specify the
number of return values (and their types)

Tuples and Lists
• Can create lists from tuples using list function:

>>> my_tuple = (10, 20, 30, 40, 50)
>>> my_list = list(my_tuple)
>>> my_list
[10, 20, 30, 40, 50]

• Can create tuples from lists using tuple function:
>>> a_list = ['summer', 'of', 2020]
>>> a_tuple = tuple(a_list)
>>> a_tuple
(‘summer', 'of', 2020)

Tuples and Dictionaries
• Can get key/value pairs from dictionaries as tuples

using the items functions:
>>> dict = {'a':1, 'b':2, 'c':3, 'd':4}
>>> list(dict.items())
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]

• Can loop though key/value pairs as tuples:
for key, value in dict.items():

print(f"{key} -> {value})

a -> 1
b -> 2
c -> 3
d -> 4

Output:

Tuples in Dictionaries
• Can use tuples as keys in dictionaries:

>>> dict = {('a',1): 10, ('b',1): 20, ('a',2): 30}
>>> list(dict.keys())
[('a', 1), ('b', 1), ('a', 2)]
>>> list(dict.values())
[10, 20, 30]

• Can use tuples as values in dictionaries:
>>> colors = { 'orange': (255, 165, 0),

'yellow': (255, 255, 0),
'aqua': (0, 128, 128) }

>>> list(colors.values())
[(255, 165, 0), (255, 255, 0), (0, 128, 128)]
>>> list(colors.keys())
['orange', 'yellow', 'aqua']

Putting it all together:
colors.py

Sorting

Basic Sorting
• The sorted function orders elements in a collection in

increasing (non-decreasing) order
– Can sort any type that support < and == operations
– For example: int, float, string
– sorted returns new collection (original collection unchanged)

>>> nums = [8, 42, 4, 8, 15, 16]
>>> sorted(nums)
[4, 8, 8, 15, 16, 42]
>>> nums
[8, 42, 4, 8, 15, 16] # original list not changed

>>> strs = ['banana', 'zebra', 'apple', 'donut']
>>> sorted(strs)
['apple', 'banana', 'donut', 'zebra']

Intermediate Sorting
• Can sort elements in decreasing (non-increasing) order
– Use the optional parameter reverse=True

>>> nums = [8, 42, 4, 8, 15, 16]
>>> sorted(nums, reverse=True)
[42, 16, 15, 8, 8, 4]

>>> strs = ['banana', 'APPLE', 'apple', 'donut']
>>> sorted(strs, reverse=True)
['donut', 'banana', 'apple', 'APPLE']

• Note case sensitivity of sorting strings!
– Any uppercase letter is less than any lowercase letter
– For example: 'Z' < 'a'

Advanced Sorting
• Sorting using a custom function
– Use the optional parameter key=<function name>

def get_len(s):
return len(s)

def main():
strs = ['a', 'bbbb', 'cc', 'zzzz']
sorted_strs = sorted(strs, key=get_len)
print(sorted_strs)

['a', 'cc', 'bbbb', 'zzzz']
Output:

Super Deluxe Advanced Sorting
• Sorting a list of tuples with a custom function
– Use the optional parameter key=<function name>
def get_count(food):

return food[1]

def main():
foods = [('apple', 5), ('banana', 2), ('chocolate', 137)]
sort_names = sorted(foods)
print(sort_names)
sort_count = sorted(foods, key=get_count)
print(sort_count)
rev_sort_count = sorted(foods, key=get_count, reverse=True)
print(rev_sort_count)

[('apple', 5), ('banana', 2), ('chocolate', 137)]
[('banana', 2), ('apple', 5), ('chocolate', 137)]
[('chocolate', 137), ('apple', 5), ('banana', 2)]

Output:

Learning Goals
1. Learning about tuples in Python

2. Writing code using tuples
3. Learning about sorting

