
Classes + Objects
Chris Gregg

Based on Slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping

• The Stanford Honor Code
– CS106A retraction policy
– Deadline to retract any assignments: August 10th

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Object-Oriented Programming
(OOP)

It's not a mistake!

Object-Oriented Programming

• There are different paradigms in programming

• So far, you've learned imperative programming
– Provide series of direct commands for program execution
– Commands are changing the program's state

• Object-oriented programming
– Define objects that contain data and behavior (functions)
– Program is (mostly) an interaction between objects
– You are calling function of objects (called "methods")

• Python allows for programming in either paradigm!
– Other programming paradigms exist, but we won't talk

about those in this class

What are Classes and Objects?

• Classes are like blueprints
– They provide a template for a kind of object
– They define a new type
– E.g., "Human" would be a class

• Generally, have 2 arms, have two legs, breathe air, etc.

• Objects are instances of Classes
– Can have multiple objects of the same Class type
– E.g., You would be an instance of the Human class

• So, you have the properties of your Class (Human)

– There are lots of other people out there too
• You are all of type "Human"
• You are all objects of the same Class

Example of a Class in Python

• Let's create a Counter class
– Can ask is for the "next" ticket number
– Need to keep track of next ticket number
– Class names start with Uppercase character
– No main() function (Class is not a program)

class Counter:

Constructor
def __init__(self):

self.ticket_num = 0 # "instance" variable

Method (function) that returns next ticket value
def next_value(self):

self.ticket_num += 1
return self.ticket_num

Let's See It In Action:
counter.py

Objects are Mutable

• When you pass an object as a parameter, changes to
object in that function persist after function ends

from counter import Counter # import the Class

def count_two_times(count):
for i in range(2):

print(count.next_value())

def main():
count1 = Counter()
count2 = Counter()

print('Count1: ')
count_two_times(count1)

print('Count2: ')
count_two_times(count2)

print('Count1: ')
count_two_times(count1)

Count1:
1
2
Count2:
1
2
Count1:
3
4

Output:

General Form for Writing a Class
• Filename for class is usually classname.py
– Filename is usually lowercase version of class name in file

class Classname:

Constructor
def __init__(self, additional parameters):

body
self.variable_name = value # example instance variable

Method
def method_name(self, additional parameters):

body

Constructor of a Class
• Constructor
– Syntax:

def __init__(self, additional parameters):
body

• Called when a new object is being created
– Does not explicitly specify a return value
– New object is created and returned
• Can think of constructor as the "factory" that creates

new objects
– Responsible for initializing object (setting initial values)
– Generally, where instance variables are created (with self)

self.variable_name = value # create instance variable

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

def __init__(self):
self.ticket_num = 0

count1 self.ticket_num 0

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 0

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

def __init__(self):
self.ticket_num = 0

count1 self.ticket_num 0

count2 self.ticket_num 0

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 0

count2 self.ticket_num 0

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 0

count2 self.ticket_num 0

def next_value(self):
self.ticket_num += 1
return self.ticket_num

count1

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 1

count2 self.ticket_num 0

def next_value(self):
self.ticket_num += 1
return self.ticket_num

count1

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 1

count2 self.ticket_num 0

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 1

count2 self.ticket_num 0

def next_value(self):
self.ticket_num += 1
return self.ticket_num

count2

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on
def main():

count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

count1 self.ticket_num 1

count2 self.ticket_num 1

def next_value(self):
self.ticket_num += 1
return self.ticket_num

count2

Instance Variables
• Instance variables are variable associated with objects
– Each object get its own set of instance variables
– Generally, they are initialized in constructor for class
– Instance variables accessed using self:

self.variable_name = value

– Self really refers to the object that a method is called on

count1 self.ticket_num 1

count2 self.ticket_num 1

def main():
count1 = Counter()
count2 = Counter()
x = count1.next_value()
y = count2.next_value()

Methods (Functions) in Class
• Methods (name used for functions in objects)
– Syntax:

def method_name(self, additional parameters):
body

• Works like a regular function in Python
– Can return values (like a regular function)
– Has access to instance variables (through self):

self.variable_name = value

– Called using an object:
object_name.method_name(additional parameters)

– Recall, parameter self is automatically set by Python as the
object that this method is being called on
• You write: number = count1.next_value()
• Python treats it as: number = next_value(count1)

Another Example: Students
• Want a Class to keep track information for Students
– Each student has information:
• Name
• ID number
• Units completed

– Want to specify a name and ID number when creating a
student object
• Initially, units completed set to 0

– Student's number of units completed can be updated over
time

– Also want to be able to check if a student can graduate
• Student needs to have at least UNITS_TO_GRADUATE units

Bring Me the Students!
student.py

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

