7q e = T —
¥~ "'ﬁ. -
LS —— -—
AR e . .
 SESENEIR. /-.H
SF 5 e~ e -
ES SRp 2

Classes + Objects

Chris Gregg
Based on Slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping

AN 7

-

e The Stanford Honor Code

— CS106A retraction policy
— Deadline to retract any assignments: August 10th

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Object-Oriented Programming
(OOP)
It's not a mistake!

Object-Oriented Programming

There are different paradigms in programming

So far, you've learned imperative programming

— Provide series of direct commands for program execution
— Commands are changing the program'’s state

Object-oriented programming

— Define objects that contain data and behavior (functions)
— Program is (mostly) an interaction between objects

— You are calling function of objects (called "methods")

Python allows for programming in either paradigm!

— Other programming paradigms exist, but we won't talk
about those in this class

What are Classes and Objecis?

e Classes are like blueprints
— They provide a template for a kind of object
— They define a new type
— E.g., "Human" would be a class

* Generally, have 2 arms, have two legs, breathe air, etc.

« Objects are instances of Classes
— Can have multiple objects of the same Class type
— E.g., You would be an instance of the Human class
* So, you have the properties of your Class (Human)

— There are lots of other people out there too
* You are all of type "Human"

* You are all objects of the same Class

Example of a Class in Python

* Let's create a Counter class

— Can ask is for the "next" ticket number

— Need to keep track of next ticket number
— Class names start with Uppercase character

— Nomain () function (Class is not a program)

class Counter:

Constructor
def init__ (self):
self.ticket num = 0 # "instance" variable

Method (function) that returns next ticket value
def next_ value(self):

self.ticket _num += 1

return self.ticket _num

Let's See It In Action:
counter.py

Objects are Mutable

* When you pass an object as a parameter, changes to
object in that function persist after function ends

from counter import Counter # import the Class

def count two_times(count):
for i in range(2):
print (count.next value())

def main():

countl = Counter|() 0 c €1
| Countl:
count2 = Counter|() utput: 1
print('Countl: ') 2
count_ two times(countl) Count2:
1
print('Count2: ') 2
count_two_times (count2) Countl:
print('Countl: ') 3
count_ two_times (countl) 4

General Form for Writing a Class

* Filename for class is usually classname.py

— Filename is usually lowercase version of class name in file

class Classname:

Constructor
def init_ (self, additional parameters) :

body
self.variable name = value # example instance variable

Method
def method name(self, additional parameters) :

body

Constructor of a Class

* Constructor

— Syntax:
def init_ (self, additional parameters) :
body

* Called when a new object is being created
— Does not explicitly specify a return value
— New object is created and returned

* Can think of constructor as the "factory" that creates
new objects

— Responsible for initializing object (setting initial values)

— Generally, where instance variables are created (with self)
self .variable name = value # create instance variable

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self£:
self .variable name

value

— Self really refers to the object that a method is called on

def main():
countl = Counter()
count2 = Counter()
x = countl.next value()

y = count2.next_value()

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:

self .variable name

value

— Self really refers to the object that a method is called on

def main():
countl = Counter ()
count2 = Counter()
x = countl.next value()
y = count2.next_value()

def init__ (self):
self.ticket num = 0

countl — self.ticket num

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main():
countl = Counter()
count2 = Counter()
x = countl.next value()
y = count2.next_value()

countl — self.ticket num 0]

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
value

self .variable name

— Self really refers to the object that a method is called on

def main(): def init__ (self):
countl = Counter|() self.ticket num = 0

count2 = Counter ()
x = countl.next value()
y = count2.next_value()

countl — self.ticket num 0]

count2 — self.ticket num)

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class
— Instance variables accessed using self:

self .variable name = value

— Self really refers to the object that a method is called on

def main():
countl = Counter()
count2 = Counter()
x = countl.next value()
y = count2.next_value()

countl — self.ticket num 0]

count2 — self.ticket num 0]

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
value

self .variable name

— Self really refers to the object that a method is called on
countl

def main():

countl = Counter()
count2 = Counter()
X = countl.next value()

def next_value(self):
self.ticket _num += 1
return self.ticket_num

y = count2.next_value()

countl — self.ticket num 0]

count2 — self.ticket num)

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
value

self .variable name

— Self really refers to the object that a method is called on
countl

def main():

countl = Counter()
count2 = Counter()
X = countl.next value()

def next_value(self):
self.ticket _num += 1
return self.ticket_num

y = count2.next_value()

countl — self.ticket num 1

count2 — self.ticket num)

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class
— Instance variables accessed using self:

self .variable name = value

— Self really refers to the object that a method is called on

def main():
countl = Counter()
count2 = Counter()
x = countl.next value()
y = count2.next_value()

countl — self.ticket num 1

count2 — self.ticket num 0]

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
value

self .variable name

— Self really refers to the object that a method is called on
count2

def main():

countl = Counter()
count2 = Counter()
x = countl.next value()

def next_value(self):
self.ticket _num += 1
return self.ticket_num

y = count2.next_value()

countl — self.ticket num 1

count2 — self.ticket num)

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
value

self .variable name

— Self really refers to the object that a method is called on
count2

def main():

countl = Counter()
count2 = Counter()
x = countl.next value()

def next_value(self):
self.ticket _num += 1
return self.ticket_num

y = count2.next_value()

countl — self.ticket num 1

count2 — self.ticket num 1

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class
— Instance variables accessed using self:

self .variable name = value

— Self really refers to the object that a method is called on

def main():
countl = Counter()
count2 = Counter()
x = countl.next value()
y = count2.next_value()

countl — self.ticket num 1

count2 — self.ticket num 1

Methods (Functions) in Class

 Methods (name used for functions in objects)

— Syntax:
def method name(self, additional parameters) :
body

* Works like a regular function in Python

— Can return values (like a regular function)

— Has access to instance variables (through self):
self.variable name = value

— Called using an object:

object name.method name (additional parameters)

— Recall, parameter self is automatically set by Python as the
object that this method is being called on
* You write: number = countl.next_ value()
e Python treats it as: number = next value(countl)

Another Example: Students

 Want a Class to keep track information for Students
— Each student has information:
* Name
* |ID number
* Units completed

— Want to specify a name and ID number when creating a
student object

* Initially, units completed setto O
— Student's number of units completed can be updated over
time
— Also want to be able to check if a student can graduate

e Student needs to have at least uNITs_To GRADUATE units

Bring Me the Students!
student.py

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

