
Classes + Memory
Chris Gregg

Based on slides by Chris Piech and Mehran Sahami
CS106A, Stanford University

Remember this?

Bouncing Balls

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Some large programs are in Python

How?

Define New Variable Types

Song UserPlaylist

Song Player Song Retriever

You Have Been Using Variable Types
SimpleImage Canvas

String

What would it take to define your own?

int

Karel

type

Classes define new variable
types

Classes decompose your
program across files

class: A template for a new type of variable.

A blueprint is a

helpful analogy

Classes are like blueprints

Blueprint for student

You must define three things

1. What variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?

*details on how to define these three things coming soon

.__dict__

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

Dog.py life.py

Classes Review

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

Dog.py life.py

Classes Review

1. What variables does each instance store?

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

Dog.py life.py

Classes Review

2. What methods can you call on an instance?

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

Classes Review

3. What happens when you make a new one?

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

Classes Review

Did I mention that a class is like a fancy dictionary?

What is a class?

A class defines a new variable type

How many variables for the ball?

1. oval
2. change_x
3. change_y

Bouncing Balls

1: Store a list of dictionaries

2: Store a list of Balls

Next step in writing large programs:
Better understand memory

You are now ready…

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

overhead

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type

ref count

int
1

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type

ref count

int
1

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type

ref count

int
1

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type

ref count

int
1

4563589904

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

5 value

type

ref count

int
1

6 value

type

ref count

int
0

4563589936

4563589904

4563589904

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589936
5 value

type

ref count

int
0

6 value

type

ref count

int
1

4563589936

4563589904

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589936
5 value

type

ref count

int
0

6 value

type

ref count

int
1

4563589936

4563589904

The stack
main

x 4563589936

binky

y 234589936

pinky

z 9993589936

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, its
frame is destroyed.

The heap

5

type

ref count

int
0

4563589904
Where values are stored

6 value

type

ref count

int
1

4563589936

Values don’t go away when
functions return

Memory is recycled when its
no longer used.

Every value has an address
(like a URL address)

def main():
x = 5
x = x + 1

Deconstructed Samosa

def main():
x = 5
x = x + 1

What does this do?

When a variable is “assigned”
you are changing its reference

You know a variable is being
assigned to if it is on the left

hand side of an = sign

def main():
x = 5
x = x + 1

What does this do?

When a variable is “used”
you are accessing its value

You know a variable is being used
to if it is not on the left hand

side of an = sign

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

9

int
0

9563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?

What is… the matrix?

The matrix origins

def main():
x = ['a', 'b', 'c']
update(x)

def update(x):
for v in x:
print(type(v), v)
v = v + '!'
print(v)

if __name__ == '__main__':
main()

http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html

What is self?

class Dog:
def __init__(self, name):
print(self)
self.name = new_name
print(self.name)

put in another file...
def main():
first = Dog('jupiter')
print(first)
print(type(first))
print(id(first))
print(first.__dict__)

What does this do?

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘jupiter’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘jupiter’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘jupiter’

name ‘jupiter’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘jupiter’

name ‘jupiter’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘jupiter’

name ‘jupiter’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

42

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘jupiter’

42

Dog
1

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘jupiter’

42

Dog
1

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘jupiter’

42

Dog
1

48

name ‘juno’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘jupiter’

42

Dog
1

48

name ‘juno’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘jupiter’

42

Dog
1

48

name ‘juno’

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

What does this do?

class Dog:
def __init__(self, new_name):

print(self)
self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('jupiter')
second = Dog('juno')

print(first)
print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘jupiter’

42

Dog
1

48

name ‘juno’

48

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)
print(juno.__dict__)

Dog.py life.py

Challenge: Trace This!

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

