- Classes + Memory

T Chris Gregg
*._ " |Based on slides by Chris Piech and Mehran Sahami) &
+, CS106A, Stanford University !

Remember this?

Bouncing Balls

BouncingBalls

@
N\

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Some large programs are in Python

% Chris Piech v/

Class Fresh

Browse
row Created by Chris Piech « 29 songs, 2 hr 1 min

Radio

Artists

Podcasts

o0 Upbeat-Code In
o Relax-Code In P
Timeless Ambient
Wed French
Dinner france

o CS398 - Fall 19
My Shazam Tracks
Summer 2019
Inspo

o p(jammin) =1
Travelling

For Chris

Class Fresh

Class Chill

Class Upbeat

o Laura Loves

) New Playlist

Je me dis que toi aussi - Version acot ()

Boulevard des Airs

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

PLAY @

LE
Innerbloom

Nevermind

Obiero

Memories

The Sun

Havana 1957 (feat. Chucho Valdés & Beatriz Luengo)
Receiver

Flow

Antofogasta de la Sierra - El Buho's Noctural Remix
Moonwalk Away

Hang Outback

| Keep Ticking On

Far From Home

Baby

Ween El-Kalam

Coming Home

Flummifreuden

Bum Bum Tam Tam

Fascinated - Instrumental Mix

ARTIST

RUFUS DU sOL

Dennis Lloyd

Ayub Ogada

Petit Biscuit

Parov Stelar, Graham Candy

Orishas, Chucho Valdés, Beatriz Luengo

Tycho

Crooked Colours

Lagartijeando, El Buho

GoldFish

Hang in Balance, Martin Cradick

The Harmaleighs

offrami, Mougleta

Bakermat

REVEIED]

Adon, Nicolas Haelg, Sam Halabi

Emil Berliner

MC Fioti, Future, J Balvin, Stefflon Don, J

Mr Blue Sky, Lloyd Chapman, Angie Turn

Downloaded
ALBUM

Bloom

Nevermind

En Mana Kuoyo (Real World Gold)
Memories

The Sun (Klingande Remix)
Gourmet

Epoch

Vera

Antofogasta de la Sierra

Three Second Memory

(REL

Pretty Picture, Dirty Brush

Far From Home

Baby

Ya Bay

Coming Home

Flummifreuden

Bum Bum Tam Tam

Fascinated

How?

You Have Been Using Variable Types

SimpleImage Canvas

Karel

String int

What would it take to define your own?

type

Classes define new variable
types

Classes decompose your
program across files

Classes are like blueprints

class: A template for a new type of variable.

You must define three things

1. What variables does each instancest}

/ 2. What can you call on an instance?

3. What happens when you make ay

*details on how to define these three things coming soon

Classes Review

Dog.py

life.py

class Dog:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)

print(juno.__dict__)

/

Classes Review

Dog.py life.py
A , D
class Dog: def main():
def—init—(self): jupiter = Dog()
self.times_barked = @ juno = Dog()
def bark(self): jupiter.bark()
print('woof"') Junq.bark()
self.times_barked += 1 jupiter.bark()
) print(jupiter.__dict__)
print(juno.__dict__)

\. J

1. What variables does each instance store?

Classes Review

Dog.py life.py
4 N 4 .)
class Dog: def main():
def __init_ (self): jupiter = Dog()
self.times_barked = @ juno = Dog()
def bark(self): jupiter.bark()
print('woof"') Junq.bark()
self.times_barked += 1 jupiter.bark()
\ y print(jupiter.__dict_)
print(juno.__dict__)

\. J

2. What methods can you call on an instance?

Classes Review

Dog.py

life.py

cl Dog.:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)

print(juno.__dict__)

/

3. What happens when you make a new one?

Classes Review

Dog.py

life.py

cl Dog.:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

Did | mention that a class is like a fancy dictionary?

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict_)

print(juno.__dict__)

/

What is a class?

A class defines a new variable type

How many variables for the ball?

1. oval
2. change x
3. change vy

Bouncing Balls

BouncingBalls

@
N\

1: Store a list of dictionaries

2: Store a list of Balls

Next step in writing large programs:
Better understand memory

You are now ready...

What does this do?

def main():
X =5
print(id(x))
X += 1
print(id(x))

What does this do?

d

X =5

print(id(x))
X += 1
print(id(x))

stack

heap

main

X

4563589904

Overheqqd
\

e
\10\\) \ 5

What does this do?

d

X =5

print(id(x))
X += 1
print(id(x))

stack

heap

main

X

4563589904

int

qov? 5

type

What does this do?

def main():

=D
(grint(id(x))]
X +=1
print(id(x))

stack heap
main int type
- ’ — 1 ref ¢
x| 4563589904 ? ount
— \10\\}6 \ 5 y

What does this do?

def main():
X =5

|x += 1 l

print(1d(x))

stack

main

X

4563589904

ﬂ&”z

heap

7~

int

1

5

type

What does this do?

def main():
X =5

|x =X + 1 l

print(1d(x))

stack

main

X

4563589904

\10\"@

heap
. \ 4563589904
int type
]. ref count
5

What does this do?

def main():

X =5
priptlid(x))
X =|Ix + 1

print(1d(x))

stack heap
main int
1 | o 1
X 4563589904 >
_ N | 5
int
0
\10\\)@ \ 6

\ 4563589904

type

? 4563589936

What does this do?

def main():
X =5

|x =X + 1 l

print(1d(x))

stack heap

N , \ 4563589904
main int type

- | 0 ref
% l 4563589936 \ count
5

\10\\}6 \ y
) 4563589936
int type

ﬂ&&e 6

What does this do?

def main():
X =5
print(id(x))

= X + 1
(v

rint(id(x))]

stack

main

X

\

]

4563589936 !

y

2
\l;\uL

N

A\

heap
, \ 4563589904
int type
O T‘ef: CoUn-I.
5
4563589936
int
1
6

é N

main

% I 4563589936 &

Pt
binky

y 234589936 &

P
pinky

2 I 9993589936 &

The stack

o M "o

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, its
frame is destroyed.

\10\"6

The heap

\ 4563589904

int type
0 ref count
5 J
. 4563589936
int type
1 ref count
6 J

&L
&£
&L

Where values are stored

Every value has an address
(like a URL address)

Values don’t go away when
functions return

Memory is recycled when its
no longer used.

Deconstructed Samosa

def main():

(f} 5

x+1]

What does this do?

def main():

X = 5
=x+1

When a variable is “assigned”
you are changing its reference

You know a variable is being
assigned to if it is on the left
hand side of an = sign

What does this do?

def main():

i:[f‘(+1]

When a variable is “used”
you are accessing its value

You know a variable is being used
to if it is not on the left hand
side of an = sign

What does this do?

[def main():]
X = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

Stack

main

X

What does this do?

X =5
binky(9)

def binky(y):

pinky(y)

def pinky(z):

print(z)

5563936 (

Stack

main

X 5563936 -

What does this do?

Stack

main

def main():

= 5
[_ﬁinky(9)]

def binky(y):
pinky(y)

X 5563936 -

def pinky(z): 5563936 (
print(z) -

What does this do?

def main():
X = §
binky(9)

| def binky(y):]
pINKy (y)

def pinky(z): 5563936 (

print(z)

Stack

main

X 5563936 -

What does this do?

def main():
X = §
binky(9)

| def binky(y):]
P1NKy(Yy)

def pinky(z):
print(z)

5563936 (

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

What does this do?

def main():
X = §
binky(9)

de ' :
| pinky(y)i

def pinky(z):
print(z)

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

What does this do?

Stack
def main(): —
v — E | X 5563006 -
binky(9) binky
y 9563936
def _binkv(v):
pinky(y)
[def pin ky(Z) :] 5563936 (1pp
print(z) 1
5
0563036 [int
1
\, 9 y

What does this do?

Stack
def main(): el
< = 5 ’ X 5563936;
binky(9) binky
y 9563936
def binky(v): T oy
leKY(Y) z 9563936
[def pinky(;){] 5563936 (T <)
print(z) 1
5
0563936 [e <
2
o 9 Yy

What does this do?

def main():
X = §
binky(9)

def _binkv(v):

pinky(y)

def _pinky(z):
print(z)

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

pinky

y

z 9563936

int

What does this do?

def main():
X = §
binky(9)

def _binkv(v):

pinky(y)

def pinky(z):

print(z)

i

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

pinky

y

z 9563936

int

What does this do?

def main():
X = §
binky(9)

def binky(y):

D pinky(y)

def pinky(z):

print(z)

5563936 (

9563936

Stack

main

)

X 5563936 -

binky

y

y 9563936

What does this do?

Stack

main

def main():

X = 5 X 5563936
U binky(9)
def binky(y):
pinky(y)
def pinky(z): 5563936 (" 1rip
print(z) 7
5
9563936 [int <
0
9

What does this do?

Stack

main

def main():
X—5 X 99563936 -

U biaky(9)

def binky(y):
pinky(y)

def pinky(z): 5563936 (
print(z) -

What does this do?

def main():
X =5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

X7

1S... the matr

What

.}o ‘.. \th

s =%
-t
—

»

- ’ -
- - - -
—
& 4 Y-t
) . § faswn’ gl o .
> >
- - - ¥ yor s S
- e

P4
. , : -
Ei ety RAGI T ey

s

- ~ -
P T PO

) A, - P e e AT

)

: of Ao L pa o v a0 AN
B iy Y e Rt
- .

R e ST -5 e

The matrix origins

http://www.pythontutor.com/visualize.html

def main():
X = [Ial’ Ibl, |C|]
update(x)

def update(x):
for v 1n Xx:
print(type(v), v)
v=v+ '
print(v)

if __name__ == ' main__':
main()

http://www.pythontutor.com/visualize.html

What is se 117

What does this do?

class Dog:
def init_ (self, name):
print(self)

self.name = new_name
print(self.name)

put i1n another file...
def main():
first = Dog('jupiter')
print(first)
print(type(first))
print(id(first))
print(first. dict_)

What does this do?

class Dog:
def _init_ (self, new_name):
print(self)

self.name = new_name
print(self.name)

+ put 38 angther file...
j =—bB0g('jupiter")
second = Dog('juno")

first)
type(first))
id(first))
first. dict)

print
print
print
print

e e e

Stack

s

main

first

\,

second

What does this do?

class Dog:
def _init_ (self, new_name):
print(self)

self.name = new_name
print(self.name)

put in another file...
def main()A
first =|Dog('jupiter})
second = ! 42

first)
type(first))
id(first))
first. dict)

print
print
print
print

e e e

Stack

s

main

first

\,

second

What does this do?

Stack
C : main
'def __init_ (self, new_name):] first
primt{set) second
self.name = new_name . L
print(self.name) Dog.__init__
)) self 42
put 1n another file... —
def main() ; Lnew_name JuplterJ
first =|Dog('jupiter})
second = ' 42 -
og
print(first) | ! J
print(type(first))
print(id(first))
(

print(first.__dict__)

What does this do?

Stack
class Dog: main
def—init _(self, new_name): first
prlnt(self) second
fE—=-"New_Nname > > R
prlnt(self name) Dog.__init__
. . self 42
put 1n another file... —
def main() : Lnew_name JuplterJ
first =|Dog('jupiter})
second = 42 Dog
print(first) _ 1)
print(type(first))
print(id(first))
(

print(first. dict_)

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first
5 second
Cfnane < newpre bt]
- Dog. init
. . self 42
put 1n another file... —
def main() : Lnew_name JuplterJ
first =|Dog('jupiter})
second = ' 2 (5 \
og
print(first) 1
print(type(first)) name jupiter’
print(id(first)) \ /
(

print(first. dict_)

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first
print(self) second
, = —nhame > L
print(self.name) Dog.__init__
. . self 42
put 1n another file... —
def main() : Lnew_name JuplterJ
first =|Dog('jupiter})
second = ! 2 (5 \
og
print(first) 1
print(type(first)) name ‘jupiter’
print(id(first)) \ /
(

print(first. dict_)

What does this do?

Stack
class Dog: main
def _init_ (self, new_name): first
print(self) second
self.name = new_name S L
print(self.name) Dog.__init__
. . self 42
put 1n another file... —
def main() : Lnew_name JuplterJ
first =|Dog('jupiter})
second = ' 42 (L, \
og
print(first) 1
print(type(first)) name jupiter’
print(id(first)) \ -
(

print(first. dict_)

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first

print(self) second
self.name = new_name \
print(self.name)
put in another file...
def main()a 42
first =|Dog('jupiter])
second = 42 (Dog
print(first) 1
print(type(first)) name ‘Jupiter’
print(id(first)) \
(

print(first. dict_)

What does this do?

, Stack
class Dog: mam
def __init_ (self, new_name): first 42
print(self) second
self.name = new_name \
print(self.name)
put in another file...
d ' : 42
first = Dog('jupiter})
= ' Q @

Dog
print(first) !
print(type(first)) name jupiter’
print(id(first)) \

(

print(first. dict_)

What does this do?

class Dog:
def _init_ (self, new_name):
print(self)

self.name = new_name
print(self.name)

put in another file...

def main():
. - L)
second = Dog('juno") 42
print(first)
print(type(first)) name
print(id(first))
(

print(first. dict_)

Stack

s

main

first

42

\,

second

Dog

1

\,

jupiter’

What does this do?

class Dog:
def _init_ (self, new_name):
print(self)

self.name = new_name
print(self.name)

put in another file...

def main():
first = L up)
second =iDog('juno')| 42
print(first)
print(type(first)) name
print(id(first))
(

print(first. dict_)

Stack

s

main

first

42

\,

second

Dog

1

jupiter’

What does this do?

Stack .
class Dog: main
def __init (self, new_name): first 42
print(self) second
self.name = new_name \ J
print(self.name)
put in another file...
def main():
first = TQQLL}gpitexj)
second =|Dog('juno") 2 (T Dpog
print(first) 1
print(type(first)) name jupiter’
print(id(first)) 4g p———t
print(first._ _dict_) o -
1

What does this do?

cl :
def init (self, new_name):]
f

primt{set
self.name new_name
print(self.name)

)

put in another file...
def main():

first = S EiTeh ')
second =|Dog('juno")

first)
type(first))
id(first))
first. dict)

print
print
print
print

e e e

name
48

Stack

main

first 42

second

Dog. init

self 48

new_name ‘juno’
\,

> L

J

f N

Dog

1

jupiter’
 —
Dog

1

—

What does this do?

class Dog:

=/new_name
prlnt(self name)

put in another file...
def main():
first = Liunid ')
second =|Dog('juno")

first)
type(first))
id(first))
first. dict)

print
print
print
print

e e e

self, new_name):

name
48

Stack

main

first 42

second

Dog. init

self 48

new_name ‘juno’
\,

> L

J

f N

Dog

1

jupiter’
 —
Dog

1

—

What does this do?

class Dog:
def _init_ (self, new_name):
nrantl(lc~lFf)
M LTTUNOC T
self.name = new_name

put in another file...
def main():
first = Liunid ')
second =|Dog('juno")

first)
type(first))
id(first))
first. dict)

print
print
print
print

e e e

name
48

name

Stack

main

first 42

\

second

L
Dog. init

self 48

\,

new_name ‘juno’
S

s

Dog

1

jupiter’

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
print(self) second
. = — > L
print(self.name) Dog.__init__
. . self 48
put 1n another file... —
def main(): Lnew_name juno)
first = ng4l}up4ie¥j)
second =|Dog('juno") 2 (T Dpog
print(first) 1
print(type(first)) name jupiter’
print(id(first)) P e —
print(first. dict) o -
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init__ (self, new_name): first 42
print(self) second
self.name = new_name . L
print(self.name) Dog.__init__
)) self 48
put 1n another file... —
def main() : LI']eW_ﬂame Juno |
first = T@g#l}upiieﬁj)
second =|Dog('juno") 2 (pog
print(first) -
print(type(first)) name jupiter’
print(id(first)) 48
print(first.__dict_) o .
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
print(self) second
self.name = new_name \ J
print(self.name)
put in another file...
def main():
first = T@gLL}upétexjgg
second =|Dog('juno") 2 (T Dpog
print(first) 1
print(type(first)) name ‘jupiter’
print(id(first)) P e —
print(first._ _dict_) o -
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
print(self) second 48
self.name = new_name \ —
print(self.name)
put in another file...
def main():
. - jup: s
second = Dog('juno") 2 (T Dpog
print(first) 1
print(type(first)) name jupiter’
print(id(first)) 48
print(first._ _dict_) o -
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
print(self) second 48
self.name = new_name \ —
print(self.name)
put in another file...
def main():
first = Dog('jupiter')
second = Dog('juno") 2 (T Dpog
print(first)| 1
rst)) name ‘jupiter’
print(id(first)) 48
print(first._ _dict_) o -
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
print(self) second 48
self.name = new_name \ _
print(self.name)
put in another file...
def main():
first = Dog('jupiter')
second = Dog('juno") 2 (T Dpog
m' £ 1
prlnt(type(flrst))] name jupiter’
st (g (s
print(first._ _dict_) _' -
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
print(self) second 48
self.name = new_name \ —
print(self.name)
put in another file...
def main():
first = Dog('jupiter')
second = Dog('juno") 2 (T Dpog
print(first) 1
. =) name ‘jupiter’
 ————
t) “®(Dog
1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
print(self) second 48
self.name = new_name \ _
print(self.name)
put in another file...
def main():
first = Dog('jupiter')
second = Dog('juno') 2 (T Dpog
print(first) 1
print(type(first)) name ‘Jupiter’
print(id(first)) P —
[print(first.__dict__)] _' -
1
name | juno’ |

Challenge: Trace This!

Dog.py

life.py

class Dog:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

def main():
jupiter = Dog()
juno = Dog()

jupiter.bark()
juno.bark()
jupiter.bark()

print(jupiter.__dict__)

print(juno.__dict__)

/

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

