The Internet

Wilhem Kavutz
CS106A, Stanford University
Based on Slides by Chris Piech and Mehran
Sahami

First, a cool demo

®0® @ indexhtml x BB | -
& C Y @ File | /Users/Chris/Document... ¥¢ '@ : :l L.
Chris@ndoto backend % python chat_server.py
Chat Client Server running...
{'command': 'getMsgs', 'params': {'index': '0'}}
v {'command': 'newMsg', 'params': {'msg': 'Hello world?', ‘'user': 'Chris'}}
BY e e s 2 v pce.. {'command': 'getMsgs', 'params': {'index': 'Q'}}
{'command': 'getMsgs', 'params': {'index': '@'}}
Messages {'command': ‘'newMsg', ‘params': {'msg': 'Here I am!!', ‘'user': 'Laura'}}
{'command': 'getMsgs', 'params': {'index': '1'}}
{'command': 'newMsg', 'params': {'msg': 'This is fun!', 'user': 'Laura'}}
T {'command': 'getMsgs', 'params': {'index': '2'}}
'{'command': 'getMsgs', 'params': {'index': '1'}}
> [Laura] Here | ami ({'command': 'newMsg', 'params': {'msg': 'Wahooooo :-)', 'user': 'Chris'}}
> [Laura] This Is fun! {'command': 'getMsgs', 'params': {'index': '3'}}
|{'command': 'newMsg', 'params': {'msg': 'We are on the internet...', ‘'user': 'Chris'}}
i {'command': 'getMsgs', 'params': {'index': '4'}}
> [Chris] We are on the internet... {'command': 'newMsg', 'params': {'msg': 'This is like low-budget WhatsApp', 'user': 'Chris'}}
> [Chris] This is like low-budget WhatsApp {) command) . 'getMsgS . ’ I params) . {) index) : I > l }}
[{'command': 'getMsgs', 'params': {'index': '3'}}
> [Laura] But we made it, which is cool. { 'command': 'getMSgS ! . ! params ' { 'index': '6"' }}
A ———— {'command': 'getMsgs', 'params': {'index': '6'}}
{'command': 'getMsgs', 'params': {'index': '6'}}
. s {'command': 'newMsg', 'params': {'msg': 'But we made it, which is cool.', 'user': 'Laura'}}
> [Terry] The internet is a wild place... { 'command': 'getMsgs 4 ’ . params b & { 'index': '6' }}
{{'command': 'getMsgs', 'params': {'index': '0'}}
{'command': 'newMsg', 'params': {'msg': 'Hi everyone! Terry here too', ‘'user': 'Terry'}}
{'command': 'getMsgs', 'params': {'index': '7'}}
{'command': 'newMsg', 'params': {'msg': 'Hi Terry!', 'user': 'Laura'}}
{'command': 'getMsgs', 'params': {'index': '7'}}
{'command': 'getMsgs', 'params': {'index': '8'}}
{'command': 'newMsg', 'params': {'msg': 'The internet is a wild place...', 'user': 'Terry'}}
{'command': 'getMsgs', 'params': {'index': '9'}}
{'command': 'getMsgs', 'params': {'index': '9'}}

[

-

<review>

Classes Review

Dog.py

(

class Dog:
def _init__ (self):
self.times_barked =0

def bark(self):
print(‘'woof')
self.times_barked += 1

life.py

f

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__ dict_)
print(juno.__dict)

Classes Review

Dog.py

(

class Dng'

def _init__ (self):
self.times_barked =0

def bark(self):
print(‘'woof')
self.times_barked += 1

life.py

(

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__ dict_)
print(juno.__dict)

1. What happens when you make a new one?

Classes Review

Dog.py

7

class Dog:

def —init{self):

self.times_barked =0

def bark(self):
print(‘'woof')
self.times_barked += 1

life.py

(

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__ dict_)
print(juno.__dict)

2. What variables does each instance store?

Classes Review

Dog.py

7

class Dog:
def _init__ (self):
self.times_barked =0

def bark(self):
print(‘'woof')
self.times_barked += 1

life.py

(

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__ dict_)
print(juno.__dict)

3. What methods can you call on an instance?

Classes Review

Dog.py

7

class Dog:
def _init__ (self):
self.times_barked =0

def bark(self):
print(‘'woof')
self.times_barked += 1

life.py

f

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba. _ dict)
print(juno.__dict)

Did | mention that a class is like a fancy dictionary?

Classes define new variable
types

Piech + Sahami, CS106A, Stanford University

Classes decompose your
program across files

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

</ reviews

One reason programmiling 1S
fun 1s because of the
internet. ..

Smart Phone Access

Advanced Economies

(6 17 K3

Emerging Economies

45 33 Bl

Hongera!

Approved for KSh 2,000

Repay your loan on time. Grow your limit to
KSh 30,000. Get fees as low as 5%.

. Smartphone
B Mobie |

DECLINE LOAN OFFER

No phone

For the fourth time ever in
CS106A:;

Learning Goals

1. Write a program that can respond to
iInternet requests

How does your phone
communicate with facebook?

The program on your phone
talks to the program at
Facebook

Face Book Server

JavaScript
with HTML
are the |
languages | (
of websites \//

Kotlin is the
language of
Android
phones

Swift is the
language of
Apple
phones

Piech + Sahami, CS106A, Stanford University

Face Book Server

Is this legit?

facebook

wkautz@stanford.edu

wkautz@stanford.edu
1s now logged 1in

Piech + Sahami, CS106A, Stanford University

Face Book Server

Send me the full name for
wkautz@stanford. edu

Wilhem Kautz

“Wilhem Kautz”

Piech + Sahami, CS106A, Stanford University

Face Book Server

Send me the cover photo for
wkautz@stanford.edu

= Kn

' A ‘
WY %Q |

YRR I S
- ~7 - \ i‘k' .

Wilhem Kautz

Face Book Server

Send the profile photo for
wkautz@stanford.edu

¥ Wihem Kautz

Face Book Server

Send the status for
wkautz@stanford. edu

“chillin”

Status: Wil is chillin

Set status:

Face Book Server
Set the status for

wkautz@stanford.edu
to be “lecturing”

“succesg”

Status: Wil is chillin

Set status: lecturing

Face Book Server
Send me the status for
wkautz@estanford.edu

“lecturing”

Status: Wil is lecturing

Set status:

Background: The Internet

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
—_—
A —
(m— (=

N

y
i~

y

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
—_—
A —
(m— (=

[N

=
m

y

“Server’ “Client”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Facebook Your computer
datacenter (facebook.com)
—_—
- Get status for “Chris =
[’l | HEEN] \‘\ Gregg” ['l | HEEN] \‘\
“Server” “Client”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Facebook ‘response’ Your computer
datacenter v (facebook.com)
“Enjoying lecture”
—
3 Get status for “Chris =
(=R Gregg” (=R
“Server” “request” “Client”

The internet is just many programs sending messages (as
Strings)

There are two types of
Internet programs. Servers
and Clients

Piech + Sahami, CS106A, Stanford University

Internet 101

Computers on the internet

et Fle € View " Hstoy Bockmrks WowHelo

ROWN

£ -

G pyramids of giza - Googl X G hotels near the pyramid:

& [hps /wwwgoogle.com

Google Maps

Google

Join the #Gi laps birthday tour at our 2nd hotels near the pyramids

destination: the Pyramids #Maps10 #Egypt . - . . v
) WEB MAPS IMAGES VIDEOS NEWS SHOPPING

172 Hotels near Giza Pyramids, Cairo, Egypt. Book Your Hotel
Now
www.booking.com/

Hotels Near The Pyramids Egypt. No reservation costs. Great rates,
Free Cancellation - 24/7 Customer Service - No Booking Fees

Deals Special Offers Book Now Pay Later

Best Price Guarantee Free Cancellation

Le Miridien Pyraimids

Hotel & Spa R
g, %
= The Great

Giza Necropalis € Pyramid at Giza
M doa 2018 Googe;ORIONH

Servers are computers (running code)

Face Book Server

- ¥ SRS V)

LA A)

a.
I e W o o i
Yy oy Ve

T)

4 &40 01
AR ¥ B e

'y

vty

©

é

@

¥ Prineville - Google Maps

X

C © @& Secure https://www.google.com/maps/place/Prineville,+OR+97754/@40.9703226,-122.0642667,6z/data=!4m5!3m4!1s... ¥

Facebook’s closest

oKennewick

Nez mEw

Perce-Clearwater Beaverhead-De

jend

datacenter is here

2 Sawtooth
OREGON Boise National Forest |
(o] <
Na r°n - IDAHO
Poc
Twin Falls
Medford ¢
o]
§
Redding
(o]
R NEVADA
eno
O
S i Humboldt-Toiyabe
acrag“e” 2 National Forest

San Francisco I am h ere
.ose

St G%orge
Freosno
Death Valley
CALIFORNIA National Park Las Vegas
(o]
Google)
Bakersfield

Map data ©2017 Google, INEGI Terms Send feedback 100r

Face Book Server

-
)
C
| -
O]
'
C
)
L
T

The Internet

Face Book Server

nnnnnnnnnnnnnnnnnn

Face Book Server

Face Book Server

-
)
C
| -
O]
'
C
)
L
T

O

Face Book Server

The Internet /(‘D C)/ Q
/

nnnnnnnnnnnnnnnnnn

Face Book Server

-
)
C
| -
O]
'
C
)
L
T

Face Book Server

The Internet

Face Book Server

The Internet

Face Book Server

The Internet

| .
)
S
—_
)
n
e
o
O
m
®
S)
®
LL

teaching

The Internet

Face Book Server

¢ G
0=Q
=~
\¢ 2
Q2 O f
\ A
iy

The Internet

Face Book Server

-
)
C
| -
O]
'
C
)
L
T

Many computers can connect
to the same server

The Internet

Facebook
datacenter

?(erver”
Chris’s ¢

computer Wil's phone
(facebook.com) (facebook app)

“Client”

A)
/" \ % Your mom’s

7 computer
(linux shell)

(A —F]

ITITI \‘\

“Client”

3

Most of the Internet

Server / Clients
Aka \‘the/ \
cloyg”

Aka “the
brains”

Most of the Internet

Server / Clients
Aka “the/ \
cloug” sthe

Aka “the Gul
brains”

Today, the server

A server’s main job is to
respond to requests

Piech + Sahami, CS106A, Stanford University

A Server’s Simple Purpose

Request

. Response
From a client P

To the client

Server

Piech + Sahami, CS106A, Stanford University

A Server’s Simple Purpose

Request

Strin
someRequest g

serverResponse

@ ® ChatServer
Startind server on port 8080...
getMsgs

newMsg

Added new message
getMsgs

Returned 1 messages
getMsgs

Returned 1 messages
newMsg

Added new message
getMsgs

Returned 1 messages
getMsgs

Servers on one slide

return a string response!

turn on the server

def main():
make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

@ # enjoy

@ # handle server requests (must be in a class)
def handle request(self, request):

Servers on one slide

Q
O

Servers on one slide

@ def handle request(self, request):

@

Servers on one slide

return a string response!

@ def handle request(self, request):

@

Servers on one slide

return a string response!

@ def handle request(self, request):

@

Servers on one slide
@ def main()

@

Servers on one slide
@ def main()

handler = MyServer()

@

Servers on one slide
@ def main()

handler = MyServer()

SimpleServer.run_server(handler, 8000)

@

Servers on one slide

Q
O

@ # enjoy

What is a Port?

80 is a special port for a server that wants to talk to web browsers

The San Fran

iseo Plers 39

1‘-'1 \ 43 2\41 1. bt

&

-

B
*

|
|

Servers on one slide

return a string response!

@ def handle request(self, request):

@

What is a Request?

/* Request has a command */
command (type 1s string)

/* Request has parameters */
params (type 1s dict)

// methods that the server calls on requests
request.command
request.params

class Request:

rr

The request class packages the key information from an internet reqgt
An internet request has both a command and a dictionary of parametet:
This class defines a special function str which means 1f you hav
instance of a request you can put it in a print function.

rr

def

t—Com ré¢quest params) :
every request has a command (stxing)
self.command = request command

every request has params (dict]
self .params = request params

nary). Can be {}

def get params(self):
a 'getter' method to get the params
return self .params

def get command(self) :
a 'getter' method to get the command
return self.command

def str (self) :

a special method which says what happens when you 'print' a re

return 'command=\'' + self.command + '\' params=' + str(self.par
ricull 1 JOIICHIII, \aJJ.UUI"\, SJLAllIIVvVI U UIIIVCIDILY W

First Server Example!

from Simplelnternet import run_server
import json

class MyServer:
def _init_ (self):
" You can store data in your server! "
pass

this is the server request callback function.

def handle_request(self, request):
" This function gets called every time someone makes a
request to our server."
return 'hello world’

def main():
make an instance of your server class
handler = MyServer()
start the server to handle internet requests!
run_server(handler, 8000)

Who makes requests?

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/")

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/")

Web browsers can send requests!

Anatomy of a Browser Request

@ @ New Tab X -+

C & http://mywebsite.com/test?first=a&second=b Guest

Anatomy of a Browser Request

@ O® pNewTab x B

C @ http://mywebsite.com/test?first=a&second=b &) Guest

The protocaol.
Usually http or https

Anatomy of a Browser Request

0@ New Tab X -

C @& http:{mywebsite.com]test?first=a&second=b &) Guest

The webaddress

of the computer

that will respond
to the request

Anatomy of a Browser Request

@ O® pNewTab x B

C & http://mywebsite.comfirst:a&secondzb (:j Guest

The request command

Anatomy of a Browser Request

@ O® pNewTab x B

C & http://mywebsite.com/test{firstza&secondzb] (ff‘ Guest

The request params

First Server Example!

from Simplelnternet import run_server
import json

class MyServer:
def _init_ (self):
" You can store data in your server! "
pass

this is the server request callback function.

def handle_request(self, request):
" This function gets called every time someone makes a
request to our server."
return 'hello world’

def main():
make an instance of your server class
handler = MyServer()
start the server to handle internet requests!
run_server(handler, 8000)

Hit Counter

Recall Requests

- — /* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.command
request.params

Requests are like Remote Method Calls

Server has a bunch m

of discrete things it

‘[I can d

make_ toast

Requests are like Remote Method Calls

Server has a bunch m

of discrete things it

‘[I can d

get_status

add user

Requests are like Remote Method Calls

get_status

Requests are like Remote Method Calls

A request.get_command ()
& N\, => “get status”

get_status

Requests are like Remote Method Calls

To make toast, I
need a parameter
which is the Kind of

/ bread

get_status

ty

Requests are like Remote Method Calls

I was given a
parameter!

get_status

ty

Requests are like Remote Method Calls

get_status

ty

Requests are like Remote Method Calls

get_status

ty

Requests are like Remote Method Calls

/7~ "\ @ wkautz
S

2

get_status

ty

Requests are like Remote Method Calls

O

teaching

Piech + Sahami, CS106A, Stanford University

def handle request (self, request):

cmd = request.command

if cmd == 'get status':
user = request.params|['userName']
status = self.get status (user)

return status

Must be a string!

Requests are like Remote Method Calls

Piech + Sahami, CS106A, Stanford University

Requests are like Remote Method Calls

Piech + Sahami, CS106A, Stanford University

Requests are like Remote Method Calls

Piech + Sahami, CS106A, Stanford University

Requests are like Remote Method Calls

Requests are like Remote Method Calls

Requests are like Remote Method Calls

Requests responses are
strings, often encoded
using JSON

Piech + Sahami, CS106A, Stanford University

ages.json

Recall JSON

7

{

"Chris":48,
"Gary".70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

) importjson

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

Recall JSON

ages.json

4 {) importjson

"Chris":48,
"Gary".70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

Recall JSON

ages.json

g { A import json

"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

write a variable to a string
data_str = json.dumps(data)

Time for a little chat

Chat Server and Client

[

®0® @ indexhtml x BB | -
& C Y @ File | /Users/Chris/Document... ¥¢ 'b : I L.
Chris@ndoto backend % python chat_server.py
Chat Client Server running...
{'command': 'getMsgs', 'params': {'index': '0'}}
v {'command': 'newMsg', 'params': {'msg': 'Hello world?', ‘'user': 'Chris'}}
BY e e s 2 v pce.. {'command': 'getMsgs', 'params': {'index': 'Q'}}
{'command': 'getMsgs', 'params': {'index': '@'}}
Messages {'command': ‘'newMsg', ‘params': {'msg': 'Here I am!!', ‘'user': 'Laura'}}
{'command': 'getMsgs', 'params': {'index': '1'}}
{'command': 'newMsg', 'params': {'msg': 'This is fun!', 'user': 'Laura'}}
T {'command': 'getMsgs', 'params': {'index': '2'}}
'{'command': 'getMsgs', 'params': {'index': '1'}}
> [Laura] Here | ami ({'command': 'newMsg', 'params': {'msg': 'Wahooooo :-)', 'user': 'Chris'}}
> [Laura] This Is fun! {'command': 'getMsgs', 'params': {'index': '3'}}
|{'command': 'newMsg', 'params': {'msg': 'We are on the internet...', ‘'user': 'Chris'}}
i {'command': 'getMsgs', 'params': {'index': '4'}}
> [Chris] We are on the internet... {'command': 'newMsg', 'params': {'msg': 'This is like low-budget WhatsApp', 'user': 'Chris'}}
> [Chris] This is like low-budget WhatsApp {) Command) . 'getMsgS . ’ I params) . {) indeX) : I > . }}
[{'command': 'getMsgs', 'params': {'index': '3'}}
> [Laura] But we made it, which is cool. {'Command' : 'getMSgS' . 'paramsl : {lindexl : |6'}}
A ———— {'command': 'getMsgs', 'params': {'index': '6'}}
{'command': 'getMsgs', 'params': {'index': '6'}}
. s {'command': 'newMsg', 'params': {'msg': 'But we made it, which is cool.', 'user': 'Laura'}}
> [Terry] The internet is a wild place... {'command': 'getMsgs', 'params': {'index': '6'}}
{{'command': 'getMsgs', 'params': {'index': '0'}}
{'command': 'newMsg', 'params': {'msg': 'Hi everyone! Terry here too', ‘'user': 'Terry'}}
{'command': 'getMsgs', 'params': {'index': '7'}}
{'command': 'newMsg', 'params': {'msg': 'Hi Terry!', 'user': 'Laura'}}
{'command': 'getMsgs', 'params': {'index': '7'}}
{'command': 'getMsgs', 'params': {'index': '8'}}
{'command': 'newMsg', 'params': {'msg': 'The internet is a wild place...', 'user': 'Terry'}}
{'command': 'getMsgs', 'params': {'index': '9'}}
{'command': 'getMsgs', 'params': {'index': '9'}}

= Notes W Comments 4

history = [
]

e

addMsg
{
'msg' : Hello world,
'user!' : 'C'
} _ °ce Chat Client

’@ e Chat Client

Hello world
N

history = [
'"[C] Hello world'
]

AN

&

getMsgs
{

'index' : O
)

°oce Chat Client

°oce Chat Client

[| send |

s

history = [
'"[C] Hello world'

]

\ ' ["[C] Hello world"] '

’@ e Chat Client

> [C] Hello world

&

°oce Chat Client

[| send |

o,)
R
)
* *
o s
1891

°oce Chat Client

[| send |

1911

history = [

' [C]

lmsgl

Hello world'

'user' : 'B'

-

'"Tm here too'

°oce Chat Client

> [C] Hello world

[Im here too

history = [
'"[C] Hello world',
'"[B] Im here too'
]

N

'Got 1t

AV

’@ ® Chat Client

°ce Chat Client

> [C] Hello world

| [(sons

1911

history = [
'"[C] Hello world',
'"[B] Im here too'

] /?

getMsgs
{

'index' : 1
)

’@ ® Chat Client

°ce Chat Client

> [C] Hello world

| [(sons

1911

history = [
'"[C] Hello world',
'"[B] Im here too'

N

1 [n [B]

Im here too"]'

-/

°ce Chat Client

°ce Chat Client

| [(sons

1911

>

>

[C] Hello world
[B] Im here too

e
getMsgs
\
'index' : 0
}

history
' [C]
' [B]

= [
Hello world',
Im here too'

XE Chat Client

[| send |

1911

’o ® Chat Client

> [C] Hello world

> [B] Im here too

S~

"["[C] Hello world'",

" [B]

Im here too"]'

v

LK

'>[C]
> [B]

Chat Client
Hello world

Im here too

[

| send |

1911

history
' [C]
' [B]

= [
Hello world',
Im here too'

XE Chat Client

[C] Hello world
[B] Im here too

Chat Server

addMsg
msg = text
Chat Server user = user

getMsgs
index = start index

Learning Goals

1. Write a program that can respond to
iInternet requests

Things we saw along the way

O
(i \\@ Face Book Servel
E ~0O
The Internet /<|)/ C)/ \/O
O/\O\ Q/—O The request command
\ 1 L.O=0"
9 S
LEe

data_str = json.dumps(data)

