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First, a cool demo
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<review>
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class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

s
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def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

1. What happens when you make a new one?
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class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

2. What variables does each instance store?



Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

3. What methods can you call on an instance?
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def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

Did I mention that a class is like a fancy dictionary?
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Classes define new variable 
types
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Classes decompose your 
program across files
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Song
UserPlaylist

Song Player Song Retriever
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</ review>
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One reason programming is 
fun is because of the 

internet...
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Advanced Economies

Emerging Economies

Smartphone

Mobile

No phone

Smart Phone Access
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For the fourth time ever in 
CS106A:
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Learning Goals
1. Write a program that can respond to 

internet requests



Piech + Sahami, CS106A, Stanford University

How does your phone 
communicate with facebook?



Piech + Sahami, CS106A, Stanford University

The program on your phone 
talks to the program at 

Facebook
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Face Book Server

Kotlin is the 
language of 
Android 
phones

Swift is the 
language of 
Apple 
phones

JavaScript 
with HTML 
are the 
languages 
of websites
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Face Book Server

Is this legit?

wkautz@stanford.edu 
is now logged in

wkautz@stanford.edu
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Face Book Server
Send me the full name for 

wkautz@stanford.edu

“Wilhem Kautz”Wilhem Kautz
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Face Book Server
Send me the cover photo for 

wkautz@stanford.edu

Wilhem Kautz
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Face Book Server

Send the profile photo for 
wkautz@stanford.edu

Wilhem Kautz
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Face Book Server

Wilhem Kautz

Status: Wil is chillin

Send the status for 
wkautz@stanford.edu

“chillin”

Set status:
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Face Book Server

Wilhem Kautz

Status: Wil is chillin

Set the status for 
wkautz@stanford.edu
to be “lecturing”

“success”

Set status: lecturing
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Face Book Server

Wilhem Kautz

Status: Chris is chillin

Send me the status for 
wkautz@stanford.edu

“lecturing”

Status: Wil is lecturing

Set status:
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The internet is just many programs sending messages (as 
Strings)

Background: The Internet
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Facebook 
datacenter

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(facebook.com)



Piech + Sahami, CS106A, Stanford University

Facebook 
datacenter

“Server” “Client”

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(facebook.com)
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Facebook 
datacenter

“Server” “Client”

Get status for “Chris 
Gregg”

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(facebook.com)
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Facebook 
datacenter

Your computer 
(facebook.com)

“Server” “Client”

Get status for “Chris 
Gregg”

“Enjoying lecture”

The internet is just many programs sending messages (as 
Strings)

“request”

“response”

Background: The Internet
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There are two types of 
internet programs. Servers 

and Clients
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Internet 101
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Computers on the internet
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Face Book Server

=

Servers are computers (running code)
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I am here

Facebook’s closest 
datacenter is here
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Face Book Server

The Internet
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Face Book Server

The Internet

Get status for wkautz@stanford.edu
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet
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Face Book Server

The Internet

teaching
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Face Book Server

The Internet

teaching
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Face Book Server

The Internet
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Many computers can connect 
to the same server
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Facebook 
datacenter

“Server”

The Internet

REQUEST
Your mom’s 
computer

(linux shell)

“Client”

RESPONSE

Chris’s 
computer 

(facebook.com)

“Client”

RESPONSEREQUEST

Wil’s phone 
(facebook app)
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Most of the Internet

Server / Clients

Aka “th
e 

backend”

Aka “the 
cloud”

Aka “the 
brains”
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Most of the Internet

Server / Clients

Aka “th
e 

backend”

Aka “the 
cloud”

Aka “the 
brains”

Aka “the frontend”

Aka “the 

GUI”
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Today, the server
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A server’s main job is to 
respond to requests
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Server

Request 
From a client

Response
To the client

A Server’s Simple Purpose
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Request 
someRequest

String
serverResponse

A Server’s Simple Purpose
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = MyServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = MyServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = MyServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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What is a Port?
80 is a special port for a server that wants to talk to web browsers
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Servers on one slide

# handle server requests (must be in a class)
def handle_request(self, request):

# return a string response!

2

3

1

# turn on the server
def main(): 

# make an instance of your server class
handler = HitServer() 
# start the server! 
SimpleServer.run_server(handler, 8000)

# enjoy
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What is a Request?

/* Request has a command */
command (type is string)

/* Request has parameters */
params (type is dict)

// methods that the server calls on requests
request.command
request.params
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class Request:
    '''
    The request class packages the key information from an internet request.
    An internet request has both a command and a dictionary of parameters.
    This class defines a special function __str__ which means if you have an
    instance of a request you can put it in a print function.
    '''
    def __init__(self, request_command, request_params):
        # every request has a command (string)
        self.command = request_command
        # every request has params (dictionary). Can be {}
        self.params = request_params

    def get_params(self):
        # a 'getter' method to get the params
        return self.params

    def get_command(self):
        # a 'getter' method to get the command
        return self.command

    def __str__(self):
        # a special method which says what happens when you 'print' a request
        return 'command=\'' + self.command + '\' params=' + str(self.params)
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First Server Example!
from SimpleInternet import run_server 
import json 

class MyServer: 
def __init__(self): 

''' You can store data in your server! '''
 pass

 # this is the server request callback function. 
def handle_request(self, request): 

''' This function gets called every time someone makes a 
request to our server.''' 
return 'hello world'

def main(): 
# make an instance of your server class
handler = MyServer() 
# start the server to handle internet requests! 
run_server(handler, 8000)
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Who makes requests?
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Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')
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Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

Web browsers can send requests!
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Anatomy of a Browser Request
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Anatomy of a Browser Request

The protocol. 
Usually http or https
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Anatomy of a Browser Request

The webaddress
of the computer 
that will respond 

to the request
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Anatomy of a Browser Request

The request command
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Anatomy of a Browser Request

The request params
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First Server Example!
from SimpleInternet import run_server 
import json 

class MyServer: 
def __init__(self): 

''' You can store data in your server! '''
 pass

# this is the server request callback function. 
def handle_request(self, request): 

''' This function gets called every time someone makes a 
request to our server.''' 
return 'hello world'

def main(): 
# make an instance of your server class
handler = MyServer() 
# start the server to handle internet requests! 
run_server(handler, 8000)
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Hit Counter
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Recall Requests

/* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.command
request.params
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ServerServer has a bunch 
of discrete things it 

can do

make_toast blend
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ServerServer has a bunch 
of discrete things it 

can do

get_status add_user
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Server

get_status add_user
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Server

get_status add_user

request.get_command()
 => ”get_status”
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To make toast, I 
need a parameter 
which is the kind of 

bread

get_status
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get_status

I was given a 
parameter!
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request.params[“userName”]

get_status
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get_status
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get_status

wkautz
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teaching
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Must be a string!

def handle_request(self, request):
    cmd = request.command
    if cmd == 'get_status':
        user = request.params['userName']
        status = self.get_status(user)
        return status
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Requests responses are 
strings, often encoded 

using JSON
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Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))
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Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))
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Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))

# write a variable to a string
data_str = json.dumps(data)
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Time for a little chat
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Chat Server and Client
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history = [
]

Send

Chat Client

Send

Chat Client

Hello world

addMsg
{
   'msg' : Hello world,
   'user' : 'C'
} 
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

getMsgs
{
   'index' : 0
}
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

'["[C] Hello world"]'

> [C] Hello world
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

Im here too

addMsg
{
   'msg' : 'Im here too'
   'user' : 'B'
}
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history = [
   '[C] Hello world',
   '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

'Got it'
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history = [
   '[C] Hello world',
   '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

getMsgs
{
   'index' : 1
}
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Send

Chat Client

Send

Chat Client

'["[B] Im here too"]'

> [C] Hello world

history = [
   '[C] Hello world',
   '[B] Im here too'
]

> [B] Im here too
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Send

Chat Client

Send

Chat Client > [C] Hello world

history = [
   '[C] Hello world',
   '[B] Im here too'
]

> [B] Im here too

getMsgs
{
   'index' : 0
}
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Send

Chat Client

Send

Chat Client > [C] Hello world
> [C] Hello world

history = [
   '[C] Hello world',
   '[B] Im here too'
]

> [B] Im here too
> [B] Im here too

'["[C] Hello world",
  "[B] Im here too"]'
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Chat Server
addMsg

msg = text
user = user

getMsgs
index = start_index

Chat Server
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Learning Goals
1. Write a program that can respond to 

internet requests



Piech + Sahami, CS106A, Stanford University

Things we saw along the way

data_str = json.dumps(data)


