
Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

First, a cool demo

Piech + Sahami, CS106A, Stanford University

<review>

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

s

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

1. What happens when you make a new one?

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

2. What variables does each instance store?

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

Dog.py life.py

3. What methods can you call on an instance?

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

Dog.py life.py

Did I mention that a class is like a fancy dictionary?

Piech + Sahami, CS106A, Stanford University

Classes define new variable
types

Piech + Sahami, CS106A, Stanford University

Classes decompose your
program across files

Piech + Sahami, CS106A, Stanford University

Song
UserPlaylist

Song Player Song Retriever

Piech + Sahami, CS106A, Stanford University

</ review>

Piech + Sahami, CS106A, Stanford University

One reason programming is
fun is because of the

internet...

Piech + Sahami, CS106A, Stanford University

Advanced Economies

Emerging Economies

Smartphone

Mobile

No phone

Smart Phone Access

Piech + Sahami, CS106A, Stanford University

For the fourth time ever in
CS106A:

Piech + Sahami, CS106A, Stanford University

Learning Goals
1. Write a program that can respond to

internet requests

Piech + Sahami, CS106A, Stanford University

How does your phone
communicate with facebook?

Piech + Sahami, CS106A, Stanford University

The program on your phone
talks to the program at

Facebook

Piech + Sahami, CS106A, Stanford University

Face Book Server

Kotlin is the
language of
Android
phones

Swift is the
language of
Apple
phones

JavaScript
with HTML
are the
languages
of websites

Piech + Sahami, CS106A, Stanford University

Face Book Server

Is this legit?

wkautz@stanford.edu
is now logged in

wkautz@stanford.edu

Piech + Sahami, CS106A, Stanford University

Face Book Server
Send me the full name for

wkautz@stanford.edu

“Wilhem Kautz”Wilhem Kautz

Piech + Sahami, CS106A, Stanford University

Face Book Server
Send me the cover photo for

wkautz@stanford.edu

Wilhem Kautz

Piech + Sahami, CS106A, Stanford University

Face Book Server

Send the profile photo for
wkautz@stanford.edu

Wilhem Kautz

Piech + Sahami, CS106A, Stanford University

Face Book Server

Wilhem Kautz

Status: Wil is chillin

Send the status for
wkautz@stanford.edu

“chillin”

Set status:

Piech + Sahami, CS106A, Stanford University

Face Book Server

Wilhem Kautz

Status: Wil is chillin

Set the status for
wkautz@stanford.edu
to be “lecturing”

“success”

Set status: lecturing

Piech + Sahami, CS106A, Stanford University

Face Book Server

Wilhem Kautz

Status: Chris is chillin

Send me the status for
wkautz@stanford.edu

“lecturing”

Status: Wil is lecturing

Set status:

Piech + Sahami, CS106A, Stanford University

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Piech + Sahami, CS106A, Stanford University

Facebook
datacenter

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(facebook.com)

Piech + Sahami, CS106A, Stanford University

Facebook
datacenter

“Server” “Client”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(facebook.com)

Piech + Sahami, CS106A, Stanford University

Facebook
datacenter

“Server” “Client”

Get status for “Chris
Gregg”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(facebook.com)

Piech + Sahami, CS106A, Stanford University

Facebook
datacenter

Your computer
(facebook.com)

“Server” “Client”

Get status for “Chris
Gregg”

“Enjoying lecture”

The internet is just many programs sending messages (as
Strings)

“request”

“response”

Background: The Internet

Piech + Sahami, CS106A, Stanford University

There are two types of
internet programs. Servers

and Clients

Piech + Sahami, CS106A, Stanford University

Internet 101

Piech + Sahami, CS106A, Stanford University

Computers on the internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

=

Servers are computers (running code)

Piech + Sahami, CS106A, Stanford University

I am here

Facebook’s closest
datacenter is here

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Get status for wkautz@stanford.edu

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

teaching

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

teaching

Piech + Sahami, CS106A, Stanford University

Face Book Server

The Internet

Piech + Sahami, CS106A, Stanford University

Many computers can connect
to the same server

Piech + Sahami, CS106A, Stanford University“Client”

Facebook
datacenter

“Server”

The Internet

REQUEST
Your mom’s
computer

(linux shell)

“Client”

RESPONSE

Chris’s
computer

(facebook.com)

“Client”

RESPONSEREQUEST

Wil’s phone
(facebook app)

Piech + Sahami, CS106A, Stanford University

Most of the Internet

Server / Clients

Aka “th
e

backend”

Aka “the
cloud”

Aka “the
brains”

Piech + Sahami, CS106A, Stanford University

Most of the Internet

Server / Clients

Aka “th
e

backend”

Aka “the
cloud”

Aka “the
brains”

Aka “the frontend”

Aka “the

GUI”

Piech + Sahami, CS106A, Stanford University

Today, the server

Piech + Sahami, CS106A, Stanford University

A server’s main job is to
respond to requests

Piech + Sahami, CS106A, Stanford University

Server

Request
From a client

Response
To the client

A Server’s Simple Purpose

Piech + Sahami, CS106A, Stanford University

Request
someRequest

String
serverResponse

A Server’s Simple Purpose

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = MyServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

What is a Port?
80 is a special port for a server that wants to talk to web browsers

Piech + Sahami, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
def handle_request(self, request):

return a string response!

2

3

1

turn on the server
def main():

make an instance of your server class
handler = HitServer()
start the server!
SimpleServer.run_server(handler, 8000)

enjoy

Piech + Sahami, CS106A, Stanford University

What is a Request?

/* Request has a command */
command (type is string)

/* Request has parameters */
params (type is dict)

// methods that the server calls on requests
request.command
request.params

Piech + Sahami, CS106A, Stanford University

class Request:
 '''
 The request class packages the key information from an internet request.
 An internet request has both a command and a dictionary of parameters.
 This class defines a special function __str__ which means if you have an
 instance of a request you can put it in a print function.
 '''
 def __init__(self, request_command, request_params):
 # every request has a command (string)
 self.command = request_command
 # every request has params (dictionary). Can be {}
 self.params = request_params

 def get_params(self):
 # a 'getter' method to get the params
 return self.params

 def get_command(self):
 # a 'getter' method to get the command
 return self.command

 def __str__(self):
 # a special method which says what happens when you 'print' a request
 return 'command=\'' + self.command + '\' params=' + str(self.params)

Piech + Sahami, CS106A, Stanford University

First Server Example!
from SimpleInternet import run_server
import json

class MyServer:
def __init__(self):

''' You can store data in your server! '''
 pass

 # this is the server request callback function.
def handle_request(self, request):

''' This function gets called every time someone makes a
request to our server.'''
return 'hello world'

def main():
make an instance of your server class
handler = MyServer()
start the server to handle internet requests!
run_server(handler, 8000)

Piech + Sahami, CS106A, Stanford University

Who makes requests?

Piech + Sahami, CS106A, Stanford University

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

Piech + Sahami, CS106A, Stanford University

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

Web browsers can send requests!

Piech + Sahami, CS106A, Stanford University

Anatomy of a Browser Request

Piech + Sahami, CS106A, Stanford University

Anatomy of a Browser Request

The protocol.
Usually http or https

Piech + Sahami, CS106A, Stanford University

Anatomy of a Browser Request

The webaddress
of the computer
that will respond

to the request

Piech + Sahami, CS106A, Stanford University

Anatomy of a Browser Request

The request command

Piech + Sahami, CS106A, Stanford University

Anatomy of a Browser Request

The request params

Piech + Sahami, CS106A, Stanford University

First Server Example!
from SimpleInternet import run_server
import json

class MyServer:
def __init__(self):

''' You can store data in your server! '''
 pass

this is the server request callback function.
def handle_request(self, request):

''' This function gets called every time someone makes a
request to our server.'''
return 'hello world'

def main():
make an instance of your server class
handler = MyServer()
start the server to handle internet requests!
run_server(handler, 8000)

Piech + Sahami, CS106A, Stanford University

Hit Counter

Piech + Sahami, CS106A, Stanford University

Recall Requests

/* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.command
request.params

Piech + Sahami, CS106A, Stanford University

ServerServer has a bunch
of discrete things it

can do

make_toast blend

Piech + Sahami, CS106A, Stanford University

ServerServer has a bunch
of discrete things it

can do

get_status add_user

Piech + Sahami, CS106A, Stanford University

Server

get_status add_user

Piech + Sahami, CS106A, Stanford University

Server

get_status add_user

request.get_command()
 => ”get_status”

Piech + Sahami, CS106A, Stanford University

To make toast, I
need a parameter
which is the kind of

bread

get_status

Piech + Sahami, CS106A, Stanford University
get_status

I was given a
parameter!

Piech + Sahami, CS106A, Stanford University

request.params[“userName”]

get_status

Piech + Sahami, CS106A, Stanford University
get_status

Piech + Sahami, CS106A, Stanford University
get_status

wkautz

Piech + Sahami, CS106A, Stanford University

teaching

Piech + Sahami, CS106A, Stanford University

Must be a string!

def handle_request(self, request):
 cmd = request.command
 if cmd == 'get_status':
 user = request.params['userName']
 status = self.get_status(user)
 return status

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Requests responses are
strings, often encoded

using JSON

Piech + Sahami, CS106A, Stanford University

Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

Piech + Sahami, CS106A, Stanford University

Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

Piech + Sahami, CS106A, Stanford University

Recall JSON

{
"Chris":48,
"Gary":70,
"Mehran":50,
"Wil":23,
"Rihanna":32,
"Adele":32

}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

write a variable to a string
data_str = json.dumps(data)

Piech + Sahami, CS106A, Stanford University

Time for a little chat

Piech + Sahami, CS106A, Stanford University

Chat Server and Client

Piech + Sahami, CS106A, Stanford University

history = [
]

Send

Chat Client

Send

Chat Client

Hello world

addMsg
{
 'msg' : Hello world,
 'user' : 'C'
}

Piech + Sahami, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

getMsgs
{
 'index' : 0
}

Piech + Sahami, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

'["[C] Hello world"]'

> [C] Hello world

Piech + Sahami, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

Im here too

addMsg
{
 'msg' : 'Im here too'
 'user' : 'B'
}

Piech + Sahami, CS106A, Stanford University

history = [
 '[C] Hello world',
 '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

'Got it'

Piech + Sahami, CS106A, Stanford University

history = [
 '[C] Hello world',
 '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

getMsgs
{
 'index' : 1
}

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client

'["[B] Im here too"]'

> [C] Hello world

history = [
 '[C] Hello world',
 '[B] Im here too'
]

> [B] Im here too

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client > [C] Hello world

history = [
 '[C] Hello world',
 '[B] Im here too'
]

> [B] Im here too

getMsgs
{
 'index' : 0
}

Piech + Sahami, CS106A, Stanford University

Send

Chat Client

Send

Chat Client > [C] Hello world
> [C] Hello world

history = [
 '[C] Hello world',
 '[B] Im here too'
]

> [B] Im here too
> [B] Im here too

'["[C] Hello world",
 "[B] Im here too"]'

Piech + Sahami, CS106A, Stanford University

Chat Server
addMsg

msg = text
user = user

getMsgs
index = start_index

Chat Server

Piech + Sahami, CS106A, Stanford University

Learning Goals
1. Write a program that can respond to

internet requests

Piech + Sahami, CS106A, Stanford University

Things we saw along the way

data_str = json.dumps(data)

