R

Ladinif

. '
o

Search Engines

Chris Gregg
Based on slides by Chris Piech and Mehran Sahami / |
CS106A, Stanford University -

e (O —




Housekeeping

F %%

-

e Assignment 6: free one-day extension. Now due on
Wednesday, August 4", 10:30am.

* Final Diagnostic is this Wednresday Thursday, 10:30am-
12:00pm, PDT
— We have posted practice material

— It will be on BlueBook, and will be similar to the week three
diagnostic.

— It will be more challenging, but doable
— It will cover everything in class up to July 28th




Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

And maybe some ]

bonus story time!




Search Engines



How to Build a Web Search Engine

* Crawling
— Find relevant documents to search over

* Indexing
— Record which terms appear in which documents

e Search
— Determine which documents match user's query

* Ranking

— Sort matching documents by "relevance" to user's query
* Serving

— Infrastructure to get queries and give results

* Interface
— User interface for presenting results to the user



In Assignment #7

Crawling
— We will provide document collection for you to search

Indexing
— You'll be writing this!

Search
— You'll be writing this!

Ranking

— Nothing fancy required, but great area for extensions

Serving
— Not required, but great area for extensions

Interface
— Give you basic text interface, but great area for extensions



Indexing

* Inverted index (generally, just called an "index")

— Similar to index in back of a book
— For each word, you want to know where it is mentioned

 Mapping, where we have: term - list of documents
containing that term

— Term is the generic way we refer to a word, name, number,
etc. that we might want to look up
* Consider the example:

— Term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

— Term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

— Term "samosa" appears in document "appetizers.txt"



Representing an Index in Python

* Consider the example:

— term "burrito" appears in the documents "recipes.txt",
"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"

— term "sushi" appears in documents "favorites.txt" and
"Japanese foods.txt"

— term "samosa" appears in document "appetizers.txt"

* |In Python, use a dictionary to represent index
— Map from term (key) to list of documents (value)

index = {
'burrito’': ['recipes.txt', 'greatest eats.txt'’,
'top 10 foods.txt', 'favorites.txt'],
'sushi': ['favorites.txt', 'Japanese foods.txt'],
'samosa’': [ 'appetizers.txt']

}



Building an Index in Assignment #7

e @Given a set of documents
— For each document, parse out all the terms:
* Terms are separated from each other by space (or newline)

e Terms should be converted to lowercase (for consistency)
* Terms need to have punctuation stripped off start/end

>>> raw = 'S$j.lo!’
>>> term = raw.strip(string.punctuation)
>>> term
'j.1lo’ 'docl.txt":
e Example: Termsin 'docl.txt": *We* are 100,000
STRONG! $$

— "*We*"' should be converted to term 'we'
— 'are' should be converted to term 'are"
— '100,000"' should be converted to term '100, 000"

— 'STRONG! ' should be converted to term 'strong'

— '$$"' should be ignored. Punctuation by itself is not a term.



Building an Index in Assignment #7

'‘docl.txt':

*We* are 100,000
 Example: Termsin 'docl.txt’: STRONG! $$

— '*we*"' should be converted to term 'we'

— 'are' should be converted to term 'are'

— '100,000"' should be converted to term '100, 000"

— 'STRONG! ' should be converted to term 'strong'

— '$$' should be ignored. Punctuation by itself is not a term.

e Resulting index (dictionary) in Python would be:

{
'we': ['docl.txt'],
'‘are': ['docl.txt'],
'100,000': ['docl.txt'],
'strong’': ['docl.txt']

} Note: Python would print the dictionary
all on one line. We just break it up on

multiple lines in our examples for clarity.



Building an Index in Assignment #7

'‘doc2.txt':

Strong, you are!

 Now, say we indexed 'doc2.txt": ~-Yoda--

— 'Strong, ' should be converted to term 'strong'
— 'you' should be converted to term 'you"

— 'are! ' should be converted to term 'are'

— '--Yoda--"' should be converted to term 'yoda"

* Updating our previous index with this data should give:

{
'we': ['docl.txt'],
'‘are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong’': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']



* Often, files have some information
that we want to keep track of (such

A Final Note on Indexing

as a title) for later display

— Here, first line of each file contains a title 'quote2.txt":
that we want to keep track of

— The terms in the title line should still be
indexed like every other line in the file

'‘quotel.txt":

Yoda quote

Strong, you are!
—-Yoda--

Gandhi's wisdom

Be the change
that you wish to

e Build a mapping (dictionary) from file |see in the

{

}

names to titles (for later display):

"quotel.txt':
"quote2.txt':

'Yoda quote’,
"Gandhi's wisdom"

world.
--Mahatma Gandhi

Note: in the index of these files,
"gandhi's" would be a term
(with the apostrophe embedded)
since the apostrophe is not at the
end beginning/end of the term.



Search

Once you have an index, searching is straightforward

— In the user interface, user enters a query

* Note: Terms in query will be separated by spaces and converted to
lowercase. (Can assume no punctuation before/after query terms.)

— For each term in query, we use the index to look up the list
of documents that the term appears in
e This list of documents is called a "posting list"

For one term queries, the posting list from the index
directly provides the results to the query

For multi-term queries, the way you combine posting
lists for each term determines how the search works



Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
* We return any document that contains any of the terms in query
* Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong"




Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
* We return any document that contains any of the terms in query
* Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong" ['doc2.txt']




Multi-Term Queries

e Can add together the results (uniquely) of all the
posting lists
— This would be comparable to doing a union with sets

— This corresponds to treating the query as a disjunction
* We return any document that contains any of the terms in query
* Logically, it's like using the connective "OR" between query terms

— Recall index:
{
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yvoda': ['doc2.txt']

} Posting list:

— Query: "yoda strong" ['doc2.txt', 'docl.txt']




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "are you yoda"




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "are you yoda" [ 'docl.txt', 'doc2.txt']




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "are you yoda" [ 'doc2.txt’]




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "are you yoda" [ 'doc2.txt’]




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "we are yoda"




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "we are yoda" [ 'docl.txt']




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "we are yoda" [ 'docl.txt']




Multi-Term Queries

e Can take the overlap of the results (uniquely) of all the
posting lists
— This would be comparable to doing an intersection with sets

— This corresponds to treating the query as a conjunction
* We return documents that contain every term in query

* Logically, it's like using the connective "AND" between query terms
— This is what you'll implement for Assignment #7

{— Recall index:
'we': ['docl.txt'],
'are': ['docl.txt', 'doc2.txt'],
'100,000': ['docl.txt'],
'strong': ['docl.txt', 'doc2.txt'],
'you': ['doc2.txt'],
}'yoda' : ['doc2.txt'] Posting list:

— Query: "we are yoda" []




Let's take it out for a spin:
searchengine.py



Ranking Documents

* |In Assignment #7, you just display the documents that
are considered matches to the query
— You are not ranking them in any particular order
— But, this is an area for cool extensions, so let's chat about it...

* One of the richest research areas in search is how to
rank documents (i.e., sort them by relevance to user)

— Doing this requires that we keep track of more information in
the index (e.g., store lists/tuples rather than just file names)

— Examples of additional information that's useful for ranking:
 Number of times a term appears in a document
* The positions of the terms in each document
* How rare particular terms are in the whole collection of documents
 How "popular" a document is (e.g., analyze link structure on the web)



Measures of Textual Similarity

Classic approach: Documents/query similarity is a
function of term frequency within the document and
across all documents

TF(w) = frequency of term w in a document/query

— Intuition: a word appearing more frequently in a document is
more likely to be related to its “meaning”

IDF(w) = log (N/n,,) + 1
where N = total # documents, n,, is # documents containing w

— Intuition: words that appear in many documents (e.g., “the”)
are generally not very informative/contentful terms

TFIDF: contribution of each term is product of these:
TFIDF(w) = TF(w) x IDF(w)



Using TFIDF to Measure Similarity

* Consider each document as a list/vector:

Doc.1=]|
Doc.2 =
Doc.3 =
* Lists/vectors are constructed such that

— Each element of list/vector represents a term w,
— Each element of list/vector has value: TFIDF(w;)

dog
3.2,
0,
0,

compute
0,
2.1,
1.7,

window ...

1.2,
5.4,
0,

cosine

— Normalize the vectors to unit length (using Euclidean norm)

 Document similarity to another document or query is measured
using the cosine between the TFIDF vectors of the
documents/queries

— Cosine = vector dot product
— Called "Vector Space Model"



Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

What about that ]

bonus story time?!?




Bonus story time:
Google
(...before 1t was Google)



STANFORD COMPUTER FORUM
TWENTY-NINTH ANNUAL MEETING

MARCH 19-20, 1997

Department of Computer Science

T e § Bl o e RS L T e R e e I Rt




1:30-3:00

1:30

2:00

2:30

3:00-3:15

Thursday, March 20, 1997

Parallel Session III-A: Information Retrieval
Professor Rajeev Motwani, Chair
H-P Auditorium

Information Retrieval and the Web
Larry Page Professor Terry Winograd, Advisor

Creating Personalized Yahoo!'s: Automated Hierarchical
Clustering and Classification of Documents
Mehran Sahami Professor Daphne Koller, Advisor

SenseMaker: An Information-Exploration Interface
Michelle Baldonado Professor Terry Winograd, Advisor

Break




Thursday, March 20, 1997

10:30-12:00 Parallel Session II-A: Data Mining

10:40

11:05

11:30

12:00-1:30

Professor Nils Nilsson, Chair
NEC Auditorium

Adaptive Web Page Recommendation
Marko Balabanovic Professor Yoav Shoham, Advisor

Problems in Data Mining
Sergey Brin Professor Hector Garcia-Molina, Advisor

Association Rules . .
Craig Silverstein Professor Rajeev Motwani, Advisor

Lunch
Gates Building, Room 104



8:30-9:00

9:00-10:30

9:30

Wednesday, March 19, 1997

Registration and Continental Breakfast
Gates Building, Basement Lobby

Opening Session
Gates Building, H-P Auditorium

Welcoming Remarks
Carolyn Tajnai, Director, Computer Forum
Professor Yoav Shoham, Annual Meeting Program Chair

Department Greetings
Professor Jean-Claude Latombe, Chairman, Computer Science Department
William F. Miller, Computer Forum Faculty Chair

Keynote Address
Dr. Eric Schmidt, CTO, CEO, Sun Microsystems
Evolution or Revolution? The Future of Network Computing

10:30-11:00 Break




Google's Beginnings

* In mid-1990's, Larry Page and Sergey Brin did research
as part of the Stanford Digital Library project
— Original project was called "BackRub"

e lLarge parts of Google were originally built in Python
— Here's some of that code (it's written in Python 1.4)

class RobotFileParser:

def _ init__ (self):
self.rules = {}

def parse(self, lines):
active = []
for line in lines:
# blank line terminates current record
if not line[:-1]:
active = []
continue
# remove optional comment and strip line
line = string.strip(line[:string.find(line, '#')])



http://google.stanford.edu

Google!

Search the web using Google!

I
[10resuts =] “Google Search | _I'm feeling lucky |
Index contains ~25 million pages (soon {o be much bigger)

About Google!

Stanford Search Linux Search

Get Google! updates monthlyl

fyour e-mail Subscribe | Archive
Copynght ©1937.8 Stanford University

Image courtesy of Google




Google's Index (circa 2004)

Too large to fit in memory for one machine

Split index into pieces, called shards

— Shards are small enough to have several per machine

— Replicate the shards for robustness

Need to still store original documents

— Want to show users “snippets” of query terms in context

— Use same sharding concept to store original documents

Replicate this whole structure within/across data
centers



Google Infrastructure (circa 2004)

Misc. servers

qu+ery /’ Spell checker

"Ad Server
!Dcleé servers _— _ _/_ I R N Doc servers :
I I ! I
I
: T lo |5 /4/2 In : : T Do D Dwm :
8T L | | e Dy | | D Dy |
;O [ 1 7 N| | I O 0 1 M :
| & I oY . |
o) : | © .
& AL :
| l | | | ol ' l Do | |D Dy | !
: 0 1 2 N| | I 0 1 M |
I : : I

<—I|ndex shards —

Elapsed time: 0.25s, machines involved: 1000+



Ranking Documents in Web Search

* Many early search engines used traditional techniques
— TF x IDF vectors
— Weight position on page (near top, in title better)
— Weight proximity of terms on a page
* They were quickly “spammed” badly
— Keyword stuffing (entire dictionaries in white/hidden text)
— Word replacement in otherwise legitimate text
— Cloaking: serving search engines one page and users another

 Anyone remember Alta Vista, Lycos, Infoseek...?



Keyword Stuffing

e Put words in tiny white font on white background on
the web page.
— Search engine still indexes all those terms!

Rock n' roll t-shirts, BuylGetlFree, Korn T-shirts, Metallica t-
shirts, Metallica, Metallica Longsleeves, Metallica Sweatshirts,
Metallica Flags, Limp Bizkit T-shirts, Limp Bizkit, Limp Bizkit
Longsleeves, Limp Bizkit Sweatshirts, ... t-shert, t-sherts, the
biggest T-shirt store on this planet, t-sit, T-SIT, t-shiitrt, T-SHIIRT,
t-shiirts, T-SHIIRTS, t-sshirt, T-SSHIRT, t-sshirts, T-SSHIRT, tt-shirt,
TT-SHIRT, tt-shirts, TT-SHIRTS, T-SHIRT, t--shirt, T--SHIRT, t--shirts,
T--SHIRTS, t-shhirt, T-SHHIRT, t-shhirts, T-SHHIRTS, t-shirrt, T-
SHIRRT, t-shirrts, T-SHIRRTS, t-shirtt, T-SHIRTT, t-shirtts, T-
SHIRTTS, tshirt, TSHIRT, tshirts, TSHIRTS, tshits, TSHITS, tshit,
TSHIT, tsir, TSIR, t tsirts, T TSIRTS, shirt, SHIRT, tshaert, TSHAERT,
tshert, TSHERT, TSHEART, tshurt, t-shurt, t-shert, tee-shert, tee
shert, tee short, tee shurt



New Method for Ranking on the Web

* Content of a page is under editorial control of writer

* Using only content on page to rank documents puts
ranking in hands of page writer

* Google made two innovations early on (using links):
— Anchor text
* Use text in link pointing to a page
— Spectral link analysis
* Use graph structure of the web to infer importance of
page
e PageRank algorithm
* Assumption: it is harder to manipulate pages not under
your own control



Leverage Anchor Text Information

<A href=http://www.stanford.edu>
Stanford University home page M

<IA> “2 s B s e

i

.

atantord Iniversity

* Anchor text tells us what link author thinks of page
being pointed to

* Link text is generally not in the control of the same
author that wrote the page being pointed to

* Quality of the referring page allows us to estimate the
quality of the target page




Analyzing Link Reference Structure

* Simple citation counting doesn’t work
— Easy to outwit
— Just create lots of links to a page from any other page
— E.g., Create a page A with 10,000 links to page B

* Quality of citing page is a factor
— Page A:
| have 5 links and you have only 2 links so | must be better.
— Page B:
Oh yeah, but New York Times points to me!



PageRank Algorithm

* Ranking technology based on link structure analysis

— Invented by Larry Page (the “Page” in PageRank) in 1997
— Stanford actually owns the patent (licensed by Google)

. U

* Provides measure of a web page’s “importance”

— Measures not just how many links point to a page, but how
important the pages are that contain those links

* Analyzes the web as a graph
— Not dependent on contents of single page
— Linkers, not page author, are judge of page
— Spam resistant
— Shows a truly innovative application of graph theory



The Web as a Graph

A B

Vertices: web pages
Edges: links from one page to another

Consider the web as a weighted graph

Weights: numbers associated with each edge



PageRank: Show Me the Randomness!

A B

PageRank measures the probability that a
“‘random surfer” will be at a given page in the
following surfing model



PageRank: Random Surfer Model

/Al B/|B]

At every clock tick the surfer surfs:
» forward over a random out-link with probability



PageRank: Random Surfer Model

/Al B/|B]

(1—l3)/N

At every clock tick the surfer surfs:
» forward over a random out-link with probability
« and otherwise jumps to random web page (probability 1 - B)



PageRank: Random Surfer Model

/Al B/|B]

(I—B)/N

PageRank of P =
B[(1/4)(PageRank of A) + (1/3)(PageRank of B)] + (1 - B)/N



PageRank: Random Surfer Model

/Al B/|B]

(I-B)/N

At every clock tick the surfer surfs:

« forward over a random out-link with probability 3

« and otherwise jumps to a random web page (probability 1 - )
* PageRank is fixed point of this model

* Intuitively: the total fraction of time a surfer spends on a page




For Those Who Really Dig Matrices

M'=(1- AR+ /M
o P-M"'P

— M = normalized web-adjacency (probability) matrix
— (1 - ) = reset probability

— R = “reset” matrix (= [1/N]n,n)

— P = PageRank vector

— P is the principal eigenvector of M’ (bonus)



google.stanford.edu (circa 1997)

Image courtesy of Google



google.com (1999)

Image courtesy of Google



Google Data Center (circa 2000)

%,
)

7/&

A

%

Fi %o X
E0 B B B2 B2

PRE A

o
+ HEEEE T e 1

Image courtesy of Google



Empty Google Data Center (2001)

Image courtesy of Google



3 Days Later...

W - e —— -
LA

b
F
h

B

RER®

Image courtesy of Google



A Day 1n the Life of Google

A picture is worth a few hundred million search queries...

hu Aug 14 00:00:00 PDT 2003

Image courtesy of Google



