
CS 106A

Stanford University

Chris Gregg

PDF of this presentation

Python Extras: Things you should know

1

http://web.stanford.edu/class/cs106a/lectures/28-Python-Extras/28-Python-Extras.pdf

There are a number of Python features that we haven't covered in
class, but you should know about them! We're going to go over the
following features today, and you will see them quite often when you
read Python, and they will be useful when you write Python programs

1. List comprehensions
2. The zip function

3. Python Sets
4. Dictionary comprehensions
5. The enumerate function

6. try / except

Python Extras: Things you should know

2

One of the slightly more advanced features of Python is the list
comprehension. List comprehensions act a bit like a for loop, and are used
to produce a list in a concise way.

A list comprehension consists of brackets containing an expression
followed by a for clause, then zero or more for or if clauses.

The result is a new list resulting from evaluating the expression in the
context of the for and if clauses which follow it.

The list comprehension always returns a list as its result. Example:

Python: Things you should know: List Comprehensions

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [2 * x for x in my_list]
>>> print(new_list)
[30, 100, 20, 34, 10, 58, 44, 74, 76, 30]

1
2
3
4
5

In this example, the list comprehension produces a new list where each
element is twice the original element in the original list. The way this
reads is, "multiply 2 by x for every element, x, in my_list"

3

Example 2:
Python: Things you should know: List Comprehensions

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [x for x in my_list if x < 30]
>>> print(new_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5

In this example, the list comprehension produces a new list that takes the
original element in the original list only if the element is less than 30. The
way this reads is, "select x for every element, x, in my_list if x < 30"

Example 3:

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [-x for x in my_list]
>>> print(new_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5

In this example, the list comprehension negates all values in the original
list. The way this reads is, "return -x for every element, x, in my_list"

4

Python: Things you should know: List Comprehensions
Let's do the same conversion for Example 2 from before:

>>> def less_than_30(lst):
... new_list = []
... for x in lst:
... if x < 30:
... new_list.append(x)
... return new_list
...
>>> less_than_30(my_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5
6
7
8
9

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [x for x in my_list if x < 30]
>>> print(new_list)
[15, 10, 17, 5, 29, 22, 15]

1
2
3
4
5

You can see that the list comprehension is more concise than the function,
while producing the same result.

The function:

5

Python: Things you should know: List Comprehensions
>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> new_list = [-x for x in my_list]
>>> print(new_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5

We can re-write list comprehensions as functions, to see how they behave
in more detail:

>>> my_list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
>>> def negate(lst):
... new_list = []
... for x in lst:
... new_list.append(-x)
... return new_list
...
>>> negate(my_list)
[-15, -50, -10, -17, -5, -29, -22, -37, -38, -15]

1
2
3
4
5
6
7
8
9

10

6

Python: Things you should know: List Comprehensions
Open up PyCharm and create a new project called ListComprehensions.
Create a new python file called "comprehensions.py".

Create the following program, and fill in the details for each
comprehension. We have done the first one for you:

def main():
 my_list = [37, 39, 0, 43, 8, -15, 23, 0, -5, 30, -10, -34, 30, -5, 28, 9,
 18, -1, 31, -12]
 print(my_list)

 # create a list called "positives" that contains all the positive values
 # in my_list
 positives = [x for x in my_list if x > 0]
 print(positives)

 # create a list called "negatives" that contains all the negative values
 # in my_list
 negatives =
 print(negatives)

 # create a list called "triples" that triples all the values of my_list
 triples =
 print(triples)

 # create a list called "odd_negatives" that contains the negative
 # value of all the odd values of my_list
 odd_negatives =
 print(odd_negatives)

if __name__ == "__main__":

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

7

Python: Things you should know: The zip function
One function which would have made your life (too) easy for assignment 4
is the zip function, which takes multiple lists and produces one item from

each list as a tuple each time the next function is used on the result of the

zip function. Example:
def zip_examples():
 list1 = ['a', 'b', 'c', 'd', 'e']
 list2 = [10, 20, 30, 40, 50]
 for v1, v2 in zip(list1, list2):
 print(v1, v2)

1
2
3
4
5

a 10
b 20
c 30
d 40
e 50

Output:

The zip function works for as many lists as you want.

8

Python: Things you should know: The zip function
Here is the documentation from help(zip):
class zip(object)
 | zip(*iterables) --> zip object
 |
 | Return a zip object whose .__next__() method returns a tuple where
 | the i-th element comes from the i-th iterable argument. The .__next__()
 | method continues until the shortest iterable in the argument sequence
 | is exhausted and then it raises StopIteration.
 |

In other words: if the lists (or any iterable, like a string) is exhausted, the
zipping stops -- the shortest list determines how many tuples we get:

s1 = "a string"
s2 = "second string"
for v1, v2 in zip(s1, s2):
 print(v1, v2)

1
2
3
4

a s
 e
s c
t o
r n
i d
n
g s

Output:

9

Python: Things you should know: The zip function
You can have as many iterables as you want with zip:

Output:

 s1 = "the"
 s2 = "cat"
 s3 = "the"
 s4 = "bat"
 s5 = "the"
 s6 = "rat"
 print(list(zip(s1, s2, s3, s4, s5, s6)))

1
2
3
4
5
6
7

[('t', 'c', 't', 'b', 't', 'r'), ('h', 'a', 'h', 'a', 'h', 'a'), ('e', 't', 'e', 't', 'e', 't')]

10

Python: Things you should know: Python Sets
There is another collection that we have not talked about that is an
important one: the set. A set is a collection that cannot hold duplicates.

Example:
def set_examples():
 my_set = set()
 for c in 'Mississippi':
 my_set.add(c)
 print(my_set)

1
2
3
4
5

{'M', 'p', 's', 'i'}

Output:

You can add duplicate elements as many times as you want to a set, but

the set only keeps one copy. You can use the in operator to see if an

element is in a set (the output of the following is True.
def set_examples():
 my_set = set()
 for c in 'Mississippi':
 my_set.add(c)
 print('s' in my_set)

1
2
3
4
5

11

Python: Things you should know: Python Sets
One interesting feature of a set is that you can find the intersection,

union, and difference of sets, and also whether a set is a subset or

superset (or disjoint, etc.):
first_three = {1, 2, 3}
evens = {2, 4, 6}
wholes = {0, 1, 2, 3, 4, 5, 6, 7}
print(first_three.union(evens))
print(first_three.intersection(evens))
print(first_three.difference(evens))
print(first_three.issubset(wholes))
print(wholes.issuperset(evens))

1
2
3
4
5
6
7
8

{1, 2, 3, 4, 6}
{2}
{1, 3}
True
True

Output:

(note: none of the functions above change the value of either set)

12

Python: Things you should know: Dictionary Comprehensions
In the same way that list comprehensions are used to convert one list into
another list, dictionary comprehensions can be used to convert one
dictionary into another.

Dictionary comprehensions use the items function of a dictionary, and

have the form:

def dictionary_comprehensions():
 dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}

 # Double each value in the dictionary
 double_dict1 = {k: v * 2 for (k, v) in dict1.items()}
 print(f"original dict: {dict1}")
 print(f"new dict: {double_dict1}")

1
2
3
4
5
6
7

original dict: {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
new dict: {'a': 2, 'b': 4, 'c': 6, 'd': 8, 'e': 10}

Output:

dict_variable = {key:value for (key,value) in dictonary.items()}1

Example:

13

Python: Things you should know: Dictionary Comprehensions
You can get fancy and modify the keys:

original dict: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
new dict: {1: 'd', 2: 'e', 0: 'c'}

Output:

d = {'a': 5, 'b': 6, 'c': 7}
d_xkeys = {k + 'x': v for (k, v) in d.items()}
print(d_xkeys)

1
2
3

You do have to be careful: remember that dictionaries cannot have
duplicate keys:

d = {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
d_mod = {k % 3: v for (k, v) in d.items()}
print(f"original dict: {d}")
print(f"new dict: {d_mod}")

1
2
3
4

{'ax': 5, 'bx': 6, 'cx': 7}

Output:

14

Python: Things you should know: The enumerate function
If you want to loop through a collection and you want both the index and
the value in the collection, you can do that the way we've seen before:

def enumerate_examples():
 xyz = ['x', 'y', 'z']
 print("old way:")
 for i in range(len(xyz)):
 value = xyz[i]
 print(f"{i}: {value}")

1
2
3
4
5
6

def enumerate_examples():
 xyz = ['x', 'y', 'z']
 print("using enumerate:")
 for i, value in enumerate(xyz):
 print(f"{i}: {value}")

1
2
3
4
5

Or you can use the enumerate function, which gets both parts for you:

old way:
0: x
1: y
2: z

new way:
0: x
1: y
2: z

Output:
I would say that I use the enumerate function

in about 30% of all the python programs I write.

15

Python: Things you should know: exceptions
Sometimes, your program does not behave the way you want it to, through no real
fault of your own. For example, let's say you try to open a file for reading that
doesn't exist:

>>> with open("my_missing_file.txt", "r") as f:
... for line in f:
... print(line)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'my_missing_file.txt'

1
2
3
4
5
6
7

In this case, your program would crash! We can avoid that crash by catching the
exception, meaning that we have Python tell us that there has been an error. For
example:

We control the
message, and we
can recover from
the error, instead
of crashing the
program.

>>> try:
... with open("my_missing_file.txt", "r") as f:
... for line in f:
... print(line)
... except:
... print("Something went wrong when trying to open the file!")
...
Something went wrong when trying to open the file!
>>>

1
2
3
4
5
6
7
8
9

16

When you have a simple except statement, this will catch any error, which is

often not what you want to do. You should try to catch the actual exception that
you expect. For example:

>>> try:
... with open("my_missing_file.txt", "r") as f:
... for line in f:
... print(line)
... except FileNotFoundError:
... print("Something went wrong when trying to open the file!")
...
Something went wrong when trying to open the file!

1
2
3
4
5
6
7
8

>>> try:
... with open("my_missing_file.txt", "r") as f:
... for line in f:
... print(line)
... except:
... print("Something went wrong when trying to open the file!")
...
Something went wrong when trying to open the file!
>>>

1
2
3
4
5
6
7
8
9

We knew that there could be a FileNotFoundError, so we caught it directly

(how did we know? We tried it and saw that error, on the last slide!)

Python: Things you should know: exceptions

17

You can catch any error that the system produces, as long as you know what you
are looking for. For example:

>>> a = int(input("Please enter an integer: "))
Please enter an integer: October
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'October'
>>> valid_input = False
>>> while not valid_input:
... try:
... a = int(input("Please enter an integer: "))
... valid_input = True
... except ValueError:
... print("That wasn't a valid integer...")
...
Please enter an integer: October
That wasn't a valid integer...
Please enter an integer: Bob
That wasn't a valid integer...
Please enter an integer: -3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

In this case, we continued the program, even though the user kept typing non-
integer inputs. We saved ourselves from a crash!

Python: Things you should know: exceptions

18

