Python Extras: Things you should know

‘00 @ cgregg@myth65: ~ (Python) 381
CS 106A >>> my_tuple = (0,1,1,2,3,5,8,13,21)
>>> my_tuple[7]

. . 13
Stanford University vo> my_tuple[7] = 42

Traceback (most recent call last):

Chris Gregg File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>>

‘o0 @ cgregg@myth65: ~ (Python) 381

>>> fives = list(range(0,101,5))
>>> print(fives)

[e, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 8@, 85, 90, 95,
100]

>>> fives[:4]

[0, 5, 10, 15]

>>> fives[4:]

[20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 8@, 85, 90, 95, 100]

>>> fives[4:8]
[20, 25, 30, 35]

‘@0 @ cgregg@myth65: ~ (Python) 381
>>> fives = list(range(90,101,5))

>>> print(fives)

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]

>>> tens = [2 * x for x in fives]

. . >>> print(tens)

PDF Of thIS presentatlon [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190
, 200]

>>> I

http://web.stanford.edu/class/cs106a/lectures/28-Python-Extras/28-Python-Extras.pdf

Python Extras: Things you should know

e There are a number of Python features that we haven't covered in
class, but you should know about them! We're going to go over the
following features today, and you will see them quite often when you
read Python, and they will be useful when you write Python programs

1. List comprehensions
2. The zip function

3. Python Sets
4. Dictionary comprehensions
5. The enumerate function

6. try/except

Python: Things you should know: List Comprehensions

One of the slightly more advanced features of Python is the list
comprehension. List comprehensions act a bit like a for loop, and are used
to produce a list in a concise way.

A list comprehension consists of brackets containing an expression
followed by a for clause, then zero or more for or i £ clauses.

The result is a new list resulting from evaluating the expression in the
context of the for and i £ clauses which follow it.

The list comprehension always returns a list as its result. Example:

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
new_list = [2 * x p 3 my list]

print (new_list)
[30, 100, 20, 34, 10, 58, 44, 74, 76, 30]

In this example, the list comprehension produces a new list where each
element is twice the original element in the original list. The way this
reads is, "multiply 2 by x for every element, x, in my_list"

Python: Things you should know: List Comprehensions
Example 2:

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
new_list = [x X my list x < 30]

print (new_list)
[15, 10, 17, 5, 29, 22, 15]

In this example, the list comprehension produces a new list that takes the
original element in the original list only if the element is less than 30. The
way this reads is, "select x for every element, x, in my_list if x < 30"

Example 3:

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
new_list = [-x p3 my list]

print (new_list)
[-15, -50, -10, -17, -5, -29, -22, -37,

In this example, the list comprehension negates all values in the original
list. The way this reads is, "return -x for every element, x, in my_list"

Python: Things you should know: List Comprehensions
Let's do the same conversion for Example 2 from before:

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
new_list = [x X my list x < 30]

print (new_list)
[15, 10, 17, 5, 29, 22, 15]

The function:

less_than_30(1lst):
new_list = []
X 1st:
x < 30:
new_list.append(x)
new_list

less_than_30(my_list)
[15, 10, 17, 5, 29, 22, 15]

VoAU WNR

You can see that the list comprehension is more concise than the function,
while producing the same result.

Python: Things you should know: List Comprehensions

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
new_list = [-x p my list]

print (new_list)
[-15, -50, -10, -17, -5, -29, -22, -37,

We can re-write list comprehensions as functions, to see how they behave
in more detail:

my list
[15, 50, 10, 17, 5, 29, 22, 37, 38, 15]
negate(lst):
new_list = []
p3 1st:
new_list.append(-x)
new_list

O~V WDNR

9 negate(my list)
i0 [-15, -50, -10, -17, -5, -29, -22, -37,

Python: Things you should know: List Comprehensions
Open up PyCharm and create a new project called ListComprehensions.
Create a new python file called "comprehensions.py".

Create the following program, and fill in the details for each
comprehension. We have done the first one for you:

main():

my list = [37, 39, O, 43, 8, -15, 23, o0, -5, 30, -10, -34, 30, -5,
18, -1, 31, -12]

print (my_list)

positives = [x
print (positives)

negatives =
print (negatives)

triples =
print(triples)

odd_negatives =
print (odd_negatives)

name == " main

Python: Things you should know: The zip function
One function which would have made your life (too) easy for assignment 4
is the zip function, which takes multiple lists and produces one item from

each list as a tuple each time the next function is used on the result of the
zip function. Example:

zip_examples():
listl = [lal’ lbl, lcl’ ldl, lel]
list2 = [10, 20, 30, 40, 50]

vl, v2 zip(listl, list2):
print(vl, v2)

Output:

The zip function works for as many lists as you want.

Python: Things you should know: The zip function
Here is the documentation fromhelp (zip):

class zip(object)
| =zip(*iterables) --> zip object

|
| Return a zip object whose .__next__ () method returns a tuple where

| the i-th element comes from the i-th iterable argument. The ._ next__ ()
| method continues until the shortest iterable in the argument sequence

| is exhausted and then it raises StopIteration.

I

In other words: if the lists (or any iterable, like a string) is exhausted, the

zipping stops -- the shortest list determines how many tuples we get:

sl = "a string"

s2 "second string"
vl, v2 zip(sl, s2):

print(vl, v2)

Python: Things you should know: The zip function

You can have as many iterables as you want with zip:

"the"
"cat"
"the"
"bat"
"the"
"rat"

sl
s2
s3
s4
s5
1)

print(list(zip(sl, s2, s3, s4, s5, s6)))

Python: Things you should know: Python Sets

There is another collection that we have not talked about that is an
important one: the set. A set s a collection that cannot hold duplicates.

Example:

set_examples():

my set = set()
c 'Mississippi':
my_set.add(c)

print (my_set)

You can add duplicate elements as many times as you want to a set, but
the set only keeps one copy. You can use the in operator to see if an
elementisin a set (the output of the following is True.

set_examples():
my_ set = set()
c 'Mississippi':

my_set.add(c)
print('s’ my_set)

11

Python: Things you should know: Python Sets

One interesting feature of a set is that you can find the intersection,
union, and difference of sets, and also whether a set is a subset or
superset (or disjoint, etc.):

first three = {1, 2, 3}

evens = {2, 4, 6}

wholes = {O, 1, 2, 3, 4, 5, 6, 7}
print (first_three.union(evens))

print (first_three.intersection(evens))
print (first_three.difference(evens))
print (first_three.issubset (wholes))
print (wholes.issuperset (evens))

OOV WINE

Output:

(note: none of the functions above change the value of either set)

12

Python: Things you should know: Dictionary Comprehensions
In the same way that list comprehensions are used to convert one list into

another list, dictionary comprehensions can be used to convert one
dictionary into another.

Dictionary comprehensions use the i tems function of a dictionary, and

have the form:

1 dict_variable = {key:value (key,value) dictonary.items ()}

Example:

dictionary_ comprehensions():
dictl = {'a': 1, 'b': 2, 'c¢': 3, 'd': 4, 'e': 5}

double dictl = {k: v * 2 (k, v) dictl.items()}
print (f"original dict: {dictl}")
print (f"new dict: {double dictl}")

original dict:
new dict:

13

Python: Things you should know: Dictionary Comprehensions
You can get fancy and modify the keys:

'+ 7}
(k, v) d.items ()}

You do have to be careful: remember that dictionaries cannot have
duplicate keys:

d={1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
d mod = {k % 3: v (k, v) d.items ()}
print (f"original dict: {d}")

print (f"new dict: {d_mod}")

original dict:

14

Python: Things you should know: The enumerate function
If you want to loop through a collection and you want both the index and

the value in the collection, you can do that the way we've seen before:

enumerate_examples():
xyz = ['x', 'y', 'z']
print("old way:")

i range(len(xyz)):
value = xyz[i]
print(£"{i}: {value}")

Or you can use the enumerate function, which gets both parts for you:

enumerate_examples():

xyz = ['x', 'y', 'z']

print ("using enumerate:")
i, value enumerate (xyz) :
print (£"{i}: {value}")

Output:
| would say that | use the enumerate function

in about 30% of all the python programs | write.

15

Python: Things you should know: exceptions

Sometimes, your program does not behave the way you want it to, through no real
fault of your own. For example, let's say you try to open a file for reading that
doesn't exist:

open("my missing file.txt", "r")
line f:
print (line)

Traceback (most recent call last):
File "<stdin>", line 1, <module>
FileNotFoundError: [Errno 2] No such file directory: 'my missing file.txt'

In this case, your program would crash! We can avoid that crash by catching the
exception, meaning that we have Python tell us that there has been an error. For
example:

We control the

open("my missing file.txt", "r")

line in £: ' message, and we
. 1i
prant(iine) can recover from
print ("Something went wrong when trying to open the file!") the error instead
8 ét;x;lething went wrong when trying to open the file! Of Crashing the

9 >>>

program.
16

Python: Things you should know: exceptions

open("my missing file.txt", "r")
line f:
print (line)

print ("Something went wrong when trying to open the file!")

8 Something went wrong when trying to open the file!
9 >>>

When you have a simple except statement, this will catch any error, which is

often not what you want to do. You should try to catch the actual exception that
you expect. For example:

open("my missing file.txt", "r")
line f:
print (line)
FileNotFoundError:
print ("Something went wrong when trying to open the file!")

Something went wrong when trying to open the file!

We knew that there could be a FileNotFoundError, so we caught it directly
(how did we know? We tried it and saw that error, on the last slide!)

17

Python: Things you should know: exceptions

You can catch any error that the system produces, as long as you know what you
are looking for. For example:

>>> a = int(input("Please enter an integer: "))
Please enter an integer: October
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'October’
>>> valid_input = False
>>> while not valid_input:
try:
a = int(input("Please enter an integer: "))
valid_input = True
except ValueError:
print ("That wasn't a valid integer...")

O~V dWNR

Please enter an integer: October
That wasn't a valid integer...
Please enter an integer: Bob
That wasn't a valid integer...
Please enter an integer: -3

In this case, we continued the program, even though the user kept typing non-
integer inputs. We saved ourselves from a crash!

