
CS 106A

Stanford University

Chris Gregg

PDF of this presentation

CS106A: Wrap-up

1

http://web.stanford.edu/class/cs106a/lectures/29-Wrap-Up/29-Wrap-Up.pdf

Where have you been?

Where are you going?

CS106B Preview

PDF of this presentation

CS106A: Wrap-up

2

http://web.stanford.edu/class/cs106a/lectures/29-Wrap/29-Wrap.pdf

When you started this course, you may never have programmed a
line of code in your life!

We stared simple: Karel!

CS106A: Wrap-up: Where have you been?

3

Karel is a great robot...but doesn't know much!

CS106A: Wrap-up: Where have you been?

4

But with functions, Karel learns quickly!

CS106A: Wrap-up: Where have you been?

Our first program!
def main():
 move()
 pick_beeper()
 turn_left()
 move()
 turn_right()
 move()
 move()
 put_beeper()
 move()

def turn_right():
 turn_left()
 turn_left()
 turn_left()

5

CS106A: Wrap-up: Where have you been?
Your first non-Karel assignment!

while loops, random numbers, integers...

6

CS106A: Wrap-up: Where have you been?
Assignment 3: Ghost and Quilt

7

CS106A: Wrap-up: Where have you been?
Week 3 diagnostic!

8

CS106A: Wrap-up: Where have you been?
Assignment 4: Sand!

9

CS106A: Wrap-up: Where have you been?
Assignment 5: Strings and Word Guessing

10

CS106A: Wrap-up: Where have you been?
Assignment 6: Baby Names

11

CS106A: Wrap-up: Where have you been?
Assignment 7: Bajillion!

12

CS106A: Wrap-up: Where are you going?

CS106A is just the beginning!

You can take many other official courses

CS106B (or equivalent) -- this is a traditional "data structures"
class where you will learn about many different data structures,
and how to build them from more rudimentary parts.

13

CS106A: Wrap-up: CS106B Preview
Data Structures courses (like CS106B) teach you more programming, but
they also teach you about efficiency. We never really cared if your
programs were particularly efficient in CS106A, but if they aren't efficient
in CS106B, your programs may never finish!

For example, does it matter if we remove elements from the front or the
back of a list?

It depends on what you care about -- we often care about how long our
programs take to run. So, let's check this question in Python. Take a look at
this function: def remove_from_list(big_list, front):

 if front:
 for i in range(len(big_list)):
 big_list.pop(0) # pop from the front
 else:
 for i in range(len(big_list)):
 big_list.pop() # pop from the back

We either remove from the front, or from the back, depending on the argument.

14

CS106A: Wrap-up: CS106B Preview
In Python, we can use the timeit library to time how long a function takes
to run. This function times our function from the previous slide for larger
and larger numbers, so we can create a graph:
import timeit

def multiple_tests():
 print('num_elements,pop_front(s),pop_back(s)')
 num_elements = 100
 while num_elements < 1000000:
 big_list = [x for x in range(num_elements)]
 runtime_front = timeit.timeit(lambda: remove_from_list(big_list, True),
 number=1)

 big_list = [x for x in range(num_elements)]
 runtime_back = timeit.timeit(lambda: remove_from_list(big_list, False),
 number=1)
 print(f"{num_elements},{runtime_front},{runtime_back}")
 num_elements *= 2

(the program has a fancy lambda function, which is necessary to time the function
using our parameters)

15

CS106A: Wrap-up: CS106B Preview
Here is the output when we run the test:

num_elements,pop_front(s),pop_back(s)
100,1.2403999999993642e-05,7.804999999999618e-06
200,1.997599999999794e-05,1.2365000000000292e-05
400,4.2077000000001474e-05,2.5162000000002183e-05
800,9.651799999999683e-05,4.8698000000006736e-05
1600,0.00023973700000000375,9.68699999999989e-05
3200,0.0006860179999999966,0.0002778829999999996
6400,0.0026121519999999995,0.00036841399999999747
12800,0.009626186000000002,0.0006882139999999995
25600,0.043316131,0.001345416000000002
51200,0.189158414,0.0026960799999999896
102400,0.8873830819999999,0.005571295000000198
204800,3.6363927990000002,0.01142525800000005
409600,15.318506804,0.02394107599999984
819200,75.538091239,0.051048672999996825

Let's graph the data in Excel

16

CS106A: Wrap-up: CS106B Preview
Here is the graph of the test:

If you remove from the front, the time is much slower! Why? Every time
you remove from the front of a list, Python has to move all the other
elements backwards! When you remove from the back of a list, no
movement is necessary.

17

CS106A: Wrap-up: CS106B Preview
So, CS106B involves data structures and efficiency

What else does CS106B teach you?

More data structures: sets, stacks, queues, priority queues, heaps,
linked lists, trees, graphs, and others (and you learn more about lists
(arrays, or vectors) and dictionaries (maps))
 Recursion: when a function calls itself. Example:

def count_down(n):
 print(n)
 if n == 0:
 return
 else:
 count_down(n - 1)

def main():
 count_down(10)

if __name__ == "__main__":
 main()

10
9
8
7
6
5
4
3
2
1
0

Output:

18

CS106A: Wrap-up: CS106B Preview
So, CS106B involves data structures and efficiency

What else does CS106B teach you?

Sorting and Searching (i.e., how to do both algorithmically)
Low-level memory management, using pointers
Asymptotic Analysis, otherwise known as "Big Oh" notation -- this is
used to analyze the data we saw in the list timing example earlier.

CS106B is more challenging than CS106A, but of course you already
know more! What is more challenging about it?

At Stanford, it is in a different language (C++) instead of Python. C++ is
a different language, which you will have to learn (but you can do it!)
The assignments are more involved, and expect a better ability to
program
The concepts are generally more advanced.

19

CS106A: Wrap-up: CS106B Preview
How can you prepare for CS106B?

You are prepared for it! CS106A is a great preparation for CS106B!

However, if you do want to start learning something now, I would suggest
taking a look at a C++ tutorial (e.g.,), and learning a bit about C++.
Here is an example Python program, and then the same program in C++:

here

def main():
 for i in range(5):
 print(f"Python {i}")

if __name__ == "__main__":
 main()

1
2
3
4
5
6

#include<iostream>
using namespace std;

int main() {
 for (int i = 0; i < 5; i++) {
 cout << "C++ " << i << endl;
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

Python 0
Python 1
Python 2
Python 3
Python 4

C++ 0
C++ 1
C++ 2
C++ 3
C++ 4

Output:

20

https://www.codecademy.com/learn/learn-c-plus-plus

CS106A: Wrap-up: CS106B Preview
Here is another example:
// Assumes we are using the Stanford Library
#include<iostream>
#include<string>
#include "vector.h" // Stanford vector, similar to a list in Python
#include "simpio.h"
using namespace std;

int main() {
 // create a vector
 Vector<string> vec;
 while (true) {
 string s = getLine("Please enter a name (blank line to end): ");
 if (s == "") {
 break;
 }
 vec.add(s);
 }
 cout << "You entered:" << endl;
 for (string s : vec) {
 cout << s << endl;
 }
 return 0;
}

C++ does do things differently! (See the next slide for the equivalent
Python program)

21

CS106A: Wrap-up: CS106B Preview
Equivalent Python program:
def main():
 my_list = []
 while True:
 s = input("Please enter a name (blank line to end): ")
 if s == '':
 break
 my_list.append(s)
 print("You entered:")
 for s in my_list:
 print(s)

if __name__ == "__main__":
 main()

Python programs tend to be shorter than C++ programs. But, there are some
similarities:

There are while loops and for loops in both.
Lists and Vectors are similar
Both have break statements
Both use dot notation

22

CS106A: Wrap-up: CS106B Preview
Some things are different in C++

All variables must be declared before they are used
The for loop has a different structure
You can only have a single type inside of a collection (e.g., ints, or strings)

Indentation is not required, though it is good style. Blocks are differentiated by

curly braces, {}, instead of indentation.

if statements and while statements require the boolean value to be

inside of parentheses, e.g., if (x == 4) {
There is no list or string slicing. :(

In the end: C++ is a new language and will take some time to learn, but it is
a powerful and fast language, and a good one to have in your
programming toolbox.

23

CS106A: Wrap-up: Other Programming Ideas
You don't have to take other official courses to learn more computer science!

Things to learn on your own:

A new programming language. Good candidates:

Javascript: the de facto standard on the World Wide Web

Haskell – a great functional programming language. Functional

programming is very different than procedural programming (which we

have been learning), and it is eye-opening to code in a functional language.

The best online resource: Learn You a Haskell for Great Good

Swift – if you want to program for a Mac or iPhone

Java – if you want o learn to program an Android phone (also, Kotlin, a

newer language for Android phones)

C++ – already discussed

C -- a great low-level language for embedded systems, and what C++ is

based on

24

CS106A: Wrap-up: Other Programming Ideas
You don't have to take other official courses to learn more computer science!

Things to learn on your own:

iOS / Android Programming: learn to program your phone!

Best iOS resource:
Good tutorials link:

Want to code for all phones (and the web, and the desktop?) Check out
React Native:

Hardware: Raspberry Pi, Arduino, FPGA: Hardware is awesome!

https://www.raywenderlich.com
http://equallysimple.com/best-android-

development-video-tutorials/

https://facebook.github.io/react-native/

Raspberry Pi resources
Arduino Resources
FPGA resources

25

https://www.raywenderlich.com/
http://equallysimple.com/best-android-development-video-tutorials/
https://facebook.github.io/react-native/
https://www.reddit.com/r/raspberry_pi/
https://www.reddit.com/r/arduino/
http://www.embedded.com/design/prototyping-and-development/4006429/FPGA-programming-step-by-step

CS106A: Wrap-up: Final Thoughts
It is a great time to be in computer science!

Virtually everything you do in the world today has some level of computing to
support it.
Even if you never program another line of code in your life, you have learned a ton
of problem solving skills, and you also know enough about computing to
understand it better than you did before (and to appreciate how challenging
programming is!)
If you do end up in a computing field, you will almost certainly be very employable
for the rest of your life.
As we saw in Monday's lecture: there is still a lot of work to do to get the
computing field to be more diverse, but you can be a driving force to accomplish
that!
If you think back on how much you knew about programming when you started this
course, and how much you know now, you deserve a huge congratulations -- you've
learned so much this quarter, and you still have a lot of great learning ahead of you.
CONGRATULATIONS!

26

