(EAH! HOURS



PART 1: LISTS




1. “Sandcastle” (warm-up) problem
You should write a function called greater than (in the file greater than.py) that

is passed a threshold integer value and a list of integers, and returns a new list which
contains only the numbers strictly greater than the threshold value from the original list
passed in. For example, if your function was called as follows:

greater than(6, [20, 6, 12, -3, 14])

then it should return the new list:
[20, 12, 14]

Note that the 6 in the original list is not included in the result list since it is not strictly
greater than the threshold value, which is 6.



LISTS REVIEW:

YOU CAN FIND THE LENGTH OF A LIST USING len()
THERE ARE TwWO WAYS TO LOOP OVER A LIST

- for i in range(len(some_list)):

- for elem in some list:

YOU CAN CREATE AN EMPTY LIST LIKE THIS: empty list = []

YOU CAN COPY A LIST LIKE THIS: list copy = some_list.copy()
YOU ADD ELEMENTS TO A LIST LIKE THIS: some_list.append(elem)
YOU CAN REMOVE THE ELEMENT AT A PARTICULAR INDEX LIKE THIS:
some_list.pop(index)



STRATEGIES:

- BUILDING UP
- CREATE AN EMPTY LIST
- ADD THE ELEMENTS THAT YOU NEED
— RETURN THE BUILT-UP LIST

— WHITTLING DOWN
- CREATE AN COPY OF THE ORIGINAL LIST
-  REMOVE THE ELEMENT THAT YOU DO NOT NEED
- RETURN THE WHITTLED DOWN LIST



LOOK OUT FOR:

- LISTS ARE ZERO-INDEXED

- NEVER MODIFY A LIST YOU ARE ITERATING OVER USING A FOR-EACH
LOOP

for elem in some list:
some_list.remove(elem)



Enter value
Enter value
Enter value
Enter value
Enter value
Enter value
Enter value
Enter value
Enter value

to
to
to
to
to
to
to
to
to

stop) :
stop) :
stop) :
stop) :
stop) :
stop) :
stop) :
stop) :
stop) :

SQWwWWwaNNhowy

If the user entered the values above, the function should return the list:
[5, 3, 6, 2, 7,

The second function you should write (also in the file removeduplicates.py) is called

6, 3, 3]

remove duplicates(num_list).

values from the original list passed in.
(num_1list) should not be changed. For example, calling:

remove_duplicates([5, 3, 6, 2, 7, 6, 3, 3])

should return the following new list:

[5, 3, 6, 2, 7]

This function is passed a list of integers
(num_1list) and it should create and return a new list which does not include any duplicate
The original list passed into the function



BASIC STEPS:
ACCEPT USER INPUT AND STORE IT IN A LIST

- USE ONE OF THE STRATEGIES USED FOR THE SANDCASTLES TO
MODIFY THE LIST TO THE DESIRED STATE

- THE FILTERING CONDITION IS NOT AS SIMPLE AS A GREATER THAN
CHECK. MIGHT REQUIRE AN ADDITIONAL LOOP.

REMEMBER TO:

- DECOMPOSE!!! (read list() AND remove duplicates())

- KEEP TRACK OF FUNCTION PARAMETERS AND RETURN TYPES
— DON’T CHAIN FUNCTIONS TOGETHER

— USE CONSTANTS INSTEAD OF MAGIC VALUES



PART 2: IMAGES




SANDCASTLE: HIGHLIGHT _fIRES()




IMAGES REVIEW:

YOU CAN CREATE A NEW BLANK IMAGE LIKE THIS: img =
SimpleImage.blank(width, height)

- YOU CAN GET THE RGB VALUES OF A PIXEL LIKE THIS:
img.get pixel(x, y)

- YOU CAN SET THE RGB VALUES OF A PIXEL LIKE THIS:
img.set pixel(x, y, pixel)

-  YOU CAN ACCESS AND MODIFY THE INDIVIDUAL RGB VALUES OF A
PIXEL LIKE THIS:
pixel = img.getpixel(x, y)
red = pixel.red
green = pixel.green
blue = pixel.blue



BASIC STEPS:

CREATE A BLANK IMAGE WHERE WE WILL PUT OUR MODIFIED PIXELS

- ITERATE OVER EVERY PIXEL IN THE IMAGE (YOU’LL NEED 2 FOR
LOOPS FOR THIS)

- CHECK IF THE PIXEL MEETS THE CRITERIA TO BE HIGHLIGHTED

— HIGHLIGHT OR GRAY OUT THE CORRESPONDING PIXEL IN THE BLANK
IMAGE ACCORDINGLY

REMEMBER TO:

— DOUBLE CHECK YOU’RE USING THE RIGHT COORDINATES. (X
CORRESPONDS TO THE WIDTH AND Y CORRESPONDS TO THE HEIGHT)



WARHOL IMAGES

‘e

CREATING A FILTER FOR A SINGLE IMAGE

- VERY SIMILAR TO THE highlight fires SANDCASTLE

- ITERATE OVER EVERY PIXEL AND MULTIPLY THE INDIVIDUAL RGB
VALUES BY THE RESPECTIVE SCALE



WARHOL IMAGES




MAKE WARHOL IMAGE

CREATE 6 FILTERED IMAGES USING THE FUNCTION YOU JUST WROTE
AND STORE THEM IN A LIST

- CREATE A BLANK IMAGE LARGE ENOUGH TO HOLD SIX PATCHES

- COPY PIXELS FROM EACH FILTERED IMAGE (PATCH) INTO THEIR
RESPECTIVE POSITIONS ON THE OVERALL IMAGE

— DOING SO WOULD REQUIRE DEVISING A FORMULA THAT TRANSLATES

THE COORDINATES OF IMAGE i TO COORDINATES ON THE LARGER
IMAGE

TIPS:

-  ENSURE THAT YOUR BLANK IMAGE HAS THE RIGHT DIMENSIONS

-  TRACE BY HAND YOUR MATH FORMULA THAT TRANSLATES PIXEL
COORDINATES






BASIC STEPS:

CREATE A BLANK IMAGE THAT WILL STORE OUR “GHOSTED” IMAGE

- ITERATE OVER ALL POSSIBLE PIXELS OF THIS IMAGE

- FOR EACH PIXEL COORDINATE, COMPUTE THE AVERAGE PIXEL ACROSS
ALL THE PROVIDED IMAGES

-  SEARCH ALL IMAGES TO FIND THE PIXEL AT THAT COORDINATE
WHICH IS “CLOSEST” TO THE AVERAGE PIXEL OF THAT COORDINATE

- PUT THIS PIXEL IN THE RESPECTIVE LOCATION OF THE BLANK
IMAGE TO BUILD UP THE “GHOSTED” IMAGE



COMPUTE AVERAGE PIXEL

INPUT: LIST OF PIXELS (EACH PIXEL BELONGS TO A DIFFERENT
IMAGE AND REPRESENTS THE SAME X-Y COORDINATE)

OUTPUT: A SINGLE PIXEL WHOSE RGB VALUES ARE THE AVERAGE OF
ALL VALUES IN THE RED, GREEN AND BLUE CHANNELS OF THE INPUT
IMAGE

THE COMPUTATION OF THE AVERAGE RGB VALUES IS VERY SIMILAR
TO WAY WE CALCULATED THE AVERAGE FOR THE SANDCASTLE

THE KEY DIFFERENCE IS INSTEAD OF AVERAGING ACROSS THE RGB
VALUES OF THE SAME PIXEL, YOU HAVE TO NOW AVERAGE THE RGB
VALUES ACROSS MULTIPLE IMAGES FOR A PIXEL AT THE SAME
COORDINATES



FIND THE BEST PIXEL

INPUT: AVERAGE PIXEL, LIST OF PIXELS (EACH PIXEL BELONGS TO
A DIFFERENT IMAGE AND REPRESENTS THE SAME X-Y COORDINATE)

- OUTPUT: A SINGLE PIXEL FROM THE INPUT LIST WHICH IS
“CLOSEST” TO THE AVERAGE PIXEL PROVIDED

-  “CLOSEST” IS THE PIXEL WITH THE LEAST “COLOR DISTANCE” TO
THE AVERAGE PIXEL

- YOU PROBABLY WANT TO CREATE A SEPARATE FUNCTION TO
CALCULATE THE COLOR DISTANCE BETWEEN TWO PIXELS

-  THINK ABOUT HOW YOU CAN USE VARIABLES AND CONTROL FLOW
STRUCTURE TO FIND THE LEAST VALUE FROM A LIST.



color distance = /(R; — R,)? + (G; — G,)? + (B; — B,)?

C o~
oggJ-—-Lluster around
) ' true color

‘\\\‘N»Average of all

colors




CREATE GHOST

INPUT: LIST OF IMAGES
- OUTPUT: A SINGLE IMAGE

- ONCE WE HAVE THE OTHER FUNCTIONS, IT IS SIMILAR TO THE
SANDCASTLE PROBLEM

- ITERATE OVER EACH PIXEL COORDINATE, APPLY THE FUNCTIONS,
OBTAIN A SINGLE PIXEL THAT NEEDS TO BE PUT IN ITS PLACE



