
Piech + Sahami, CS106A, Stanford University

More Lists
Chris Piech and Mehran Sahami

CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Housekeeping

• Diagnostic assessments will be graded this weekend

– Please don't talk to others about it until they are returned

• We'll talk more about what scores on the assessment
mean after it's returned

– Important to focus on what the diagnostic is telling you about
learning and understanding, not just the grade

Piech + Sahami, CS106A, Stanford University

Swapping Elements in a List - Sad

def swap_elements_buggy(elem1, elem2):

temp = elem1

elem1 = elem2

elem2 = temp

def main():

my_list = [10, 20, 30]

swap_elements_buggy(my_list[0], my_list[1])

print(my_list)

[10, 20, 30]Output:

Piech + Sahami, CS106A, Stanford University

Swapping Elements in a List - Happy

def swap_elements_working(alist, index1, index2):

temp = alist[index1]

alist[index1] = alist[index2]

alist[index2] = temp

def main():

my_list = [10, 20, 30]

swap_elements_working(my_list, 0, 1)

print(my_list)

[20, 10, 30]Output:

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Piech + Sahami, CS106A, Stanford University

Slices

Piech + Sahami, CS106A, Stanford University

What are Slices?

• Can cut up lists into "slices"

– Slices are just sub-portions of lists

– Slices are also lists themselves

– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'c' 'd'

0 1

aslice

Piech + Sahami, CS106A, Stanford University

What are Slices?

• Can cut up lists into "slices"

– Slices are just sub-portions of lists

– Slices are also lists themselves

– Slicing creates a new list

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

aslice = alist[2:4]

aslice[0] = 'x'

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

'x' 'd'

0 1

aslice

Piech + Sahami, CS106A, Stanford University

General Form of Slice

• General form to get a slice
list[start:end]

– Produces a new list with elements from list starting at index
start up to (but not including) index end

• Example:
alist = ['a', 'b', 'c', 'd', 'e', 'f']

alist[2:4] → ['c', 'd']

alist[1:6] → ['b', 'c', 'd', 'e', 'f']

alist[0:3] → ['a', 'b', 'c']

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

6

Piech + Sahami, CS106A, Stanford University

I'll Take Another Slice!

• General form to get a slice
list[start:end]

– If start is missing, default to use 0 in its place
– If end is missing, default to use len(list) in its place

– Can also use negative indexes for start/end

alist[2:-2] → ['c', 'd']

alist[-2:] → ['e', 'f']

alist[:-1] → ['a', 'b', 'c', 'd', 'e']

alist[:] → ['a', 'b', 'c', 'd', 'e', 'f']

-6 -5 -4 -3 -2 -1

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

Piech + Sahami, CS106A, Stanford University

Advanced Slices

• General form to get a slice, with a step
list[start:end:step]

– Take slice from start to end, progressing by step

– step can be negative (go backwards, so start/end are flipped)

alist[1:5:2] → ['b', 'd']

alist[::2] → ['a', 'c', 'e']

alist[4:1:-1] → ['e', 'd', 'c'] # note start

alist[1:4:-1] → []

alist[::-1] → ['f', 'e', 'd', 'c', 'b', 'a']

-6 -5 -4 -3 -2 -1

'a' 'b' 'c' 'd' 'e' 'f'

0 1 2 3 4 5

alist

Piech + Sahami, CS106A, Stanford University

Loops and Slices

• Can use for-each loop with slice

– Slice is just a list, so you can use it just like a list

– Recall loops with lists:

for i in range(len(list)):

do something with list[i]

for elem in list:

do something with elem

Piech + Sahami, CS106A, Stanford University

Loops and Slices

• Can use for-each loop with slice

– Slice is just a list, so you can use it just like a list

– Now, for loops with slices (note: step is optional)

for i in range(start, end, step):

do something with list[i]

for elem in list[start:end:step]:

do something with elem

• Remember: if step is negative, then start should
be greater than end

Piech + Sahami, CS106A, Stanford University

Deleting with Slices

• You can delete elements in a list with del

• Example:

>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1]

>>> num_list

[50, 40, 60, 90, 80]

• Can use del with slice notation:

>>> num_list = [50, 30, 40, 60, 90, 80]

>>> del num_list[1:4]

>>> num_list

[50, 90, 80]

Piech + Sahami, CS106A, Stanford University

Changing a List in Place

• Python provides some operations on whole list
– These functions modify list in place (doesn't create new list)

• Function: list.reverse()
– Reverses order of elements in the list
>>> fun_list = [6, 3, 12, 4]

>>> fun_list.reverse()

>>> fun_list

[4, 12, 3, 6]

• Function: list.sort()
– Sorts the elements of the list in increasing order
>>> fun_list = [6, 3, 12, 4]

>>> fun_list.sort()

>>> fun_list

[3, 4, 6, 12]

Piech + Sahami, CS106A, Stanford University

2-Dimensional

Lists

Piech + Sahami, CS106A, Stanford University

2-Dimensional List

• You can have a list of lists!

– Each element of "outer" list is just another list

– Can think of this like a grid

• Example:
grid = [[1, 2], [3, 4], [5, 6]]

• Can be easier to think of like this:

[1, 2] [3, 4] [5, 6]

0 1 2

grid

grid [1, 2] 0

[3, 4] 1

[5, 6] 2

Piech + Sahami, CS106A, Stanford University

2-Dimensional List

• Um, can you zoom in on that…

grid [1, 2] 0

[3, 4] 1

[5, 6] 2

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

Piech + Sahami, CS106A, Stanford University

2-Dimensional List

• To access elements, specify index in "outer" list, then
index in "inner" list
grid[0][0] → 1

grid[1][0] → 3

grid[2][1] → 6

grid 0

1

2

1 2

0 1

3 4

0 1

5 6

0 1

grid[0][0]

1

grid[0][1]

2

grid[1][0]

3

grid[1][1]

4

grid[2][0]

5

grid[2][1]

6

Piech + Sahami, CS106A, Stanford University

2-Dimensional List

• So what if I only specify one index?
grid[0] → [1, 2]

grid[1] → [3, 4]

grid[2] → [5, 6]

• Remember, grid is just a list of lists
– Elements of "outer" list are just lists

grid 1 2

0 1

3 4

0 1

5 6

0 1

0

1

2

Piech + Sahami, CS106A, Stanford University

Getting Funky With Lists

• Do the inner lists all have to be the same size?
– No! Just be careful if they are not.
jagged = [[1, 2, 3], [4], [5, 6]]

jagged[0] → [1, 2, 3]

jagged[1] → [4]

jagged[2] → [5, 6]

• Can I have more than two dimensions?
– Sure! You can have as many as you like (within reason).
cube = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

cube[0] → [[1, 2], [3, 4]]

cube[0][1] → [3, 4]

cube[0][1][0] → 3

Piech + Sahami, CS106A, Stanford University

Swapping Elements in a Grid

def swap(grid, row1, col1, row2, col2):

temp = grid[row1][col1]

grid[row1][col1] = grid[row2][col2]

grid[row2][col2] = temp

def main():

my_grid = [[10, 20, 30], [40, 50, 60]]

swap(my_grid, 0, 1, 1, 2)

print(my_grid)

[[10, 60, 30], [40, 50, 20]]Output:

Piech + Sahami, CS106A, Stanford University

def main():

grid = [[10, 20], [40], [70, 80, 100]]

rows = len(grid)

for i in range(rows):

cols = len(grid[i])

for j in range(cols):

print("grid[" + str(i) + "][" + str(j)

+ "] = " + str(grid[i][j]))

Looping Through a List of Lists

grid[0][0] = 10

grid[0][1] = 20

grid[1][0] = 40

grid[2][0] = 70

grid[2][1] = 80

grid[2][2] = 100

Output:

Piech + Sahami, CS106A, Stanford University

def main():

grid = [[1, 2], [10, 11], [20, 21]]

rows = len(grid)

cols = len(grid[0])

for i in range(rows):

for j in range(cols):

print("grid[" + str(i) + "][" + str(j)

+ "] = " + str(grid[i][j]))

Simplified With a True Grid

grid[0][0] = 1

grid[0][1] = 2

grid[1][0] = 10

grid[1][1] = 11

grid[2][0] = 20

grid[2][1] = 21

Output:

Piech + Sahami, CS106A, Stanford University

def main():

grid = [[10, 20], [40], [70, 80, 100]]

for row in grid:

for elem in row:

print(elem)

Using For-Each With 2-D List

10

20

40

70

80

100

Output:

Piech + Sahami, CS106A, Stanford University

def create_grid(rows, cols, value):

grid = [] # Create empty grid

for y in range(rows): # Make rows one by one

row = []

for x in range(cols): # Build up each row

row.append(value) # by appending to list

grid.append(row) # Append row (list)

onto grid

return grid

Creating a 2-D List

>>> create_grid(2, 4, 1)

[[1, 1, 1, 1], [1, 1, 1, 1]]

>>> create_grid(3, 2, 5)

[[5, 5], [5, 5], [5, 5]]

Console:

Piech + Sahami, CS106A, Stanford University

Putting it all together:

spread.py

(This program give you practice

with a lot of concepts!)

Added bonus: example of how

computing is used for modeling

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Piech + Sahami, CS106A, Stanford University

[

]

[, , ,],
[, , ,],
[, , ,]

Piech + Sahami, CS106A, Stanford University

