More Lists

Chris Piech and Mehran Sahami
CS106A, Stanford University

= '

Housekeeping

F %

|-

e Diagnostic assessments will be graded this weekend

— Please don't talk to others about it until they are returned
e We'll talk more about what scores on the assessment
mean after it's returned

— Important to focus on what the diagnostic is telling you about
learning and understanding, not just the grade

Swapping Elements in a List - Sad

def swap elements buggy(eleml, elem2):
temp = eleml
eleml = elem2
elem2 = temp

def main () :
my list = [10, 20, 30]
swap elements buggy(my list[0], my list[1])
print (my list)

Output: | [10, 20, 30]

Swapping Elements in a List - Happy

def swap elements working(alist, indexl, index2):
temp = alist[indexl]
alist[indexl] = alist[index2]
alist[index2] = temp

def main():
my list = [10, 20, 30]
swap elements working(my list, 0, 1)
print (my list)

Output: | [20, 10, 30]

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Slices

What are Slices?

e Can cut up lists into "slices"
— Slices are just sub-portions of lists
— Slices are also lists themselves

— Slicing creates a new list

e Example:
alist = [vav, 'b', 'C', 'd', 'E', 'f']
alist—> 'a' 'b' 'c! ld! e’ 1 F

0 1 2 3 4 S|

aslice = alist[2:4]

aslice—| 1o | 'q"

0 1

What are Slices?

e Can cut up lists into "slices"
— Slices are just sub-portions of lists
— Slices are also lists themselves

— Slicing creates a new list

e Example:
alist = [vav, 'b', 'C', 'd', 'E', 'f']
alist—> 'a' 'b' 'c! |d| e’ 1 F

0 1 2 3 4 S|

aslice = alist[2:4]

aslice—| 1y | 'q"

aslice[0] = 'x'

General Form of Slice

 General form to get a slice
list [start:end]

— Produces a new list with elements from list starting at index
start up to (but not including) index end

e Example:
alist= [laI, 'b'] 'c|, ld|, |e|’ 'f']

alist —| '

alist[2:4] - ['c
alist[1l:6] - ['D',
alist[0:3] - ['a

I'll Take Another Slicel

 General form to get a slice

list [start: en

d]

— If start is missing, default to use 0 in its place
— If end is missing, default to use len (list) in its place

— Can also use negative indexes for start/end

N N5 N Na P Ml
alist —| 'a' | 'b' | 'c 'd' | ! 'f£!

0 L2 s LS
alist[2:-2] —> ['e¢', 'd']
alist[-2:] —> ['e', '"f']
alist[:-1] —> ['a', 'b', 'c¢', 'd', 'e']
alist|[:] - ['a', 'b', '¢', 'd', 'e', 'f']

Advanced Slices

* General form to get a slice, with a step

list [start:end: step]

— Take slice from start to end, progressing by step
— step can be negative (go backwards, so start/end are flipped)
i\-6 i_5 i_4 i\'3 i_z i_l '

alist_> 'a' 'b' 'c' 'd' 'e' 'f'

TSl A VL P VA VA
alist[l:5:2] —> ['b', 'd']
alist[::2] —> ['a', '¢', 'e']
alist[4:1:-1] > ['e', 'd', 'e¢'] # note start
alist[1l:4:-1] > []
alist[::-1] - ['f', 'e', 'd', '¢', 'b', 'a']

Loops and Slices

e Can use for-each loop with slice

— Slice is just a list, so you can use it just like a list
— Recall loops with lists:

for i in range(len(list)):
do something with list[i]

for elem in list:
do something with elem

Loops and Slices

e Can use for-each loop with slice

— Slice is just a list, so you can use it just like a list
— Now, for loops with slices (note: step is optional)

for i in range(start, end, step):
do something with list[i]

for elem in list[start:end:step]:
do something with elem

e Remember: if step is negative, then start should
be greater than end

Deleting with Slices

* You can delete elements in a list with del

e Example:
>>> num list = [50, 30, 40, 60, 90, 80]
>>> del num list[1]
>>> num_list
[50, 40, 60, 90, 80]

e Can use del with slice notation:
>>> num list = [50, 30, 40, 60, 90, 80]
>>> del num list[1:4]

>>> num;list
[50, 90, 80]

Changing a lList in Place

* Python provides some operations on whole list
— These functions modify list in place (doesn't create new list)

* Function: list. reverse ()

— Reverses order of elements in the list
>>> fun list = [6, 3, 12, 4]
>>> fun list.reverse()

>>> fun list

[4, 12, 3, 6]

* Function: list. sort ()

— Sorts the elements of the list in increasing order
>>> fun list = [6, 3, 12, 4]

>>> fun list.sort()

>>> fun list

[3, 4, 6, 12]

2—Dimensional
LL1sts

2-Dimensional List

 You can have a list of lists!

— Each element of "outer" list is just another list
— Can think of this like a grid

e Example:
grid = [[1, 2], [3, 41, [5, 6]]
grid —| [1, 2] [3, 4] [5, 6]
0 1 2

e Can be easier to think of like this:

grid —| [1, 2] 0
[3, 4] 1
[5, 6] 2

grid —»

2-Dimensional List

[1,

2]

[3,

4]

[,

6]

2

 Um, can you zoom in on that...

grid —

1 | 2

0
0 1
3| 4 1
0 1
5| 6 5
0 1

2-Dimensional List

grid — 112
3| 4
0
5| 6
0 1

grid[0] [O]
1

grid[0] [1]
2

grid[1][0]
3

grid[1][1]
4

grid[2] [O0]
5

grid[2] [1]
6

* To access elements, specify index in "outer" list, then
index in "inner" list

grid[0] [0]
grid[1][0]
grid[2][1]

— 1
- 3
—> 6

2-Dimensional List

grid — 112 0
3| 4 .
0
5| 6 ,
0 1
 So what if | only specify one index?

grid[O0] - [1, 2]

grid[1] - [3, 4]

grid[2] — [5, 6]

e Remember, grid is just a list of lists
— Elements of "outer" list are just lists

Getting Funky With Lists

e Do the inner lists all have to be the same size?

— No! Just be careful if they are not.
Jagged = [[1, 2, 3], [4], [5, 6]l

jagged[0] - [1, 2, 3]
jagged[1] - [4]
jagged[2] — [5, 6]

e Can | have more than two dimensions?

— Sure! You can have as many as you like (within reason).
cube = [[[1, 2], [3, 4]1], [[5, 6], [7, 8]1]
cube[0] - [[1, 2], [3, 4]]

cube[0] [1] — [3, 4]

cube[0][1][0] —»> 3

Swapping Elements in a Grid

def swap(grid, rowl, coll, row2, col2):
temp = grid[rowl] [coll]
grid[rowl] [coll] = grid[row2] [col2]
grid[row2] [col2] = temp

def main () :
my grid = [[10, 20, 30], [40, 50, 60]]
swap (my grid, 0, 1, 1, 2)
print (my grid)

Output: ([[10, 60, 30], [40, 50, 20]]

Looping Through a List of Lists

def main() :
grid = [[10, 207, [40], [70, 80, 100]]
rows = len(grid)
for i in range (rows):
cols = len(grid[i])
for j in range(cols):
print ("grid[" + str(i) + "]J[" + str(j)
+ "] =" + str(grid[i]l[3j]))

Output: |grid[0] [0] = 10

grid[0] [1] = 20
grid[1][0] = 40
grid[2][0] = 70
grid[2][1] = 80

grid[2] [2] = 100

Simplified With a True Grid

def main() :
grid = [[1, 2], [10, 11], [20, 21]]
rows = len(grid)
cols = len(grid[0])
for i in range (rows):
for j in range(cols):
print ("grid[" + str(i) + "][" + str(j)
+ "] =" + str(grid[i]l[3j]))

Output: [grid[0] [0] =1

grid[0] [1] = 2

grid[1][0] = 10
grid[1][1] = 11
grid[2][0] = 20

grid[2] [1] = 21

Using For-Each With 2-D List

def main () :
grid = [[10, 20], [40], [70, 80, 100]]
for row in grid:
for elem in row:
print (elem)

Output: |10
20
40
70
80
100

Creating a 2-D List

def create grid(rows, cols, value):

grid = [] # Create empty grid
for y in range (rows): # Make rows one by one
row = []
for x in range(cols): # Build up each row

row. append (value) # by appending to list

Append row (list)
onto grid

grid.append (row)

3+ =

return grid

Console:

>>> create grid(2, 4, 1)
[[1, 1, 1, 11, [1, 1, 1, 111
>>> create grid(3, 2, 5)
[[5, 51, [5, 31, [5, 311

Putting 1t all together:
spread.py

(This program give you practice
with a lot of concepts!)

Added bonus: example of how
computing 1s used for modeling

Learning Goals

1. Learning about slices
2. Working with 2-dimensional lists

Piech + Sahami, CS106A, Stanford University

