Tuples + Sorting
Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping |

F %

|-

Assighnment # 5 due today
Assignment # 6 out today (due Mon., Nov. 9th)

2nd diagnostic assessment on Mon, Nov. 2nd at 1pm PST
— Exam file available to download shortly before start time

— Daylight savings time ends 2am on Sun., Nov. 1st ("Fall back")

— Diagnostic covers through lecture on Oct. 26th

— Practice diagnostic available on website

No LalR on Tues., Nov 3rd. (vote!, work polls, etc.)

Housekeeping Il

F_ %

|-

* Apply for CS51: CS + Social Good Studio: Designing Social
Impact Projects
— 2 unit class in Winter quarter
— Work with non-profit partner organization to build app
— More information at: https://tinyurl.com/cs-studio-info

— Application: http://www.tinyurl.com/cs-studio-apply
e Deadline: Nov. 6th at 11:59pm (PST)

https://tinyurl.com/cs-studio-info
http://www.tinyurl.com/cs-studio-apply

Learning Goals

1. Learning about tuples in Python
2. Writing code using tuples
3. Learning about sorting

Tuples

What is a Tuple?

* Atupleis way to keep track of an ordered collection of
items
— Similar to a list, but immutable (can't be changed in place)
— Ordered: can refer to elements by their position
— Collection: list can contain multiple items

e Often used to keep track of data that are conceptually
related, such as

— Coordinates for a point: (x, y)
— RGB values for a color: (red, green, blue)
— Elements of an address: (street, city, state, zipcode)

* Can be used to return multiple values from a function_

Show Me the Tuples!

* Creating tuples

— Tuples start/end with parentheses. Elements separated by
commas.

my tuple = (1, 2, 3)

point = (4.7, -6.0)

strs = ('strings', 'in', 'tuple')

addr = ('102 Ray Ln', 'Stanford', 'CA', 94305)
empty tuple = ()

* Tuple with one element has a comma (to denote tuple)

— Could try this out on the console:
>>> tuple one = (1))

>>> one =1

>>> tuple one == one
False

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', 'c¢', 'd', 'e')

* Access elements of tuple just like a list:
— Indexes start from 0

letters — 'a' 'b' 'c'! 'd’ 'e'!
0 1 2 3 4

 Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', 'c¢', 'd', 'e')

* Access elements of tuple just like a list:
— Indexes start from 0

letters — 'a' 'b' 'c'! 'd’ 'e'

0 1 2 3 4
* Cannot assign to individual elements:

— Tuples are immutable
letters[0] = 'x'

TypeError: 'tuple' object does not support
item assignment

Accessing Elements of Tuple

* Consider the following tuple:

letters = ('a', 'b', 'c¢', 'd', 'e')

* Access elements of tuple just like a list:
— Indexes start from 0

letters — 'a' 'b’ 'c' 'd’ 'e'
0 1 2 3 4
* Cannot assign to individual elements:

— Tuples are immutable

— Also, there are no append/pop functions for tuples
— Tuples cannot be changed in place
— To change, need to create new tuple and overwrite variable

Getting Length of a Tuple

* Consider the following tuple:
letters = ('a', 'b', 'c¢', 'd', 'e')
* Can get length of tuple with 1en function:

len(letters) is 5
— Elements of tuple are indexed from 0 to length — 1

* Using length to loop through a tuple:

for 1 in range(len(letters)):
print(str(i) + " -> " + letters[i])

N

|

\%
00 W

Indexes and Slices

* Consider the following tuple:
letters = ('a', 'b', 'c¢', 'd', 'e')
* Negative indexes in tuple work just the same as lists
— Work back from end of tuple

— Example:
letters[-1] is 'e'

 Slices work on tuples same way as lists (but get tuple)
>>> aslice = letters[2:4]
>>> aslice
('e', 'd")

aslice — 'o! rd!

Good Times with Tuples

* More tuple examples:
chartreuse rgb = (127, 255, 0)
stanford = ('450 Serra Mall', 'Stanford', 'CA', 94305)

* Printing tuples:
>>> print (chartreuse rgb)
(127, 255, 0)

>>> print (stanford)
('450 Serra Mall', 'Stanford', 'CA', 94305)

* Check if tuple is empty (empty tuple is like "False")

i1f stanford:

print ('stanford is not empty')
else:

print ('stanford is empty')

More Good Times with Tuples

* More tuple examples:

chartreuse rgb = (127, 255, 0)

stanford = ('450 Serra Mall', 'Stanford', 'CA', 94305)
* Check to see if a tuple contains an element:

state = 'CA'

1f state in stanford:
do something

* General form of test (evaluates to a Boolean):
element in tuple

— Returns True if element is a value in tuple, False otherwise
— Can also test if element is not in tuple using not in

A Few Tuple Functions

chartreuse rgb = (127, 255, 0)

* Function: max (chartreuse rgb)

— Returns maximal value in the tuple
>>> max (chartreuse rgb)
255

* Function: min (chartreuse rgb)

— Returns minimal value in the tuple
>>> min (chartreuse rgb)
0

* Function: sum(chartreuse rgb)

— Returns sum of the values in the tuple
>>> sum(chartreuse rgb)
382

Looping Through Tuple Elements

stanford = ('450 Serra Mall', 'Stanford', 'CA', 94305)

* Forloop using range:

for i in range(len(stanford)):
elem = stanford[i]

_ Output:
print(elem) 450 Serra Mall
Stanford
* For-each loop: CA
for elem in stanford: 94305

print (elem)

* These loops both iterate over all elements of the tuple
— Variable elem is set to each value in tuple (in order)
— Works just the same as iterating through a list

Tuples as Parameters

 When you pass a tuple as a parameter, think of it like
passing an integer or a string
— Tuple is immutable, so changes in function do not persist!

def

def

Output: |In remove red: (0, 255, 0)

remove red(rgb tuple):
rgb tuple = (0, rgb tuple[l], rgb tuple[2])
print ("In remove red: " + str(rgb tuple))

main () :

chartreuse rgb = (127, 255, 0)

remove red(chartreuse rgb)

print("In main: " + str(chartreuse rgb))

In main: (127, 255, 0)

Assignment with Tuples

e Can use tuples to assign multiple variables at once:

— Number of variables on left-hand side of assignment needs
to be the same as the size of the tuple on the right-hand side

>>> (x, y) = (3, 4)
>>> X

3

>>> y

4

Returning Tuples from Functions

e Can use tuples to return multiple values from function

— Stylistic point: values returned should make sense as
something that is grouped together (e.g., (x, y) coordinate)

def get date():
day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

def main|() :
(dd, mm, yyyy) = get_date()
print(str(mm) + "/" + str(dd) + "/" + str(yyyy))

Terminal:

Day (DD): 10
Month (MM): 05
Year (YYYY): 1970
5/10/1970

Returning Tuples from Functions

e Can use tuples to return multiple values from function

— Stylistic point: values returned should make sense as
something that is grouped together (e.g., (x, y) coordinate)
def get date():
day = int(input("Day (DD): "))
month = int(input("Month (MM): "))
year = int(input("Year (YYYY): "))
return day, month, year

def main|() :
(dd, mm, yyyy) = get_date()
print(str(mm) + "/" + str(dd) + "/" + str(yyyy))

— Note: all paths through a function should return a tuple of the
same length, otherwise program might crash

— For functions that return tuples, comment should specify the
number of return values (and their types)

Tuples and Lists

e Can create lists from tuples using 1ist function:

>>> my tuple = (10, 20, 30, 40, 50)
>>> my list = list(my tuple)

>>> my list

[10, 20, 30, 40, 50]

e Can create tuples from lists using tuple function:

>>> a list = ['need', 'to', 'vote', 'in', 2020]
>>> a tuple = tuple(a list)

>>> a tuple

('need', 'to', 'vote', 'in', 2020)

Tuples and Dictionaries

* Can get key/value pairs from dictionaries as tuples
using the items functions:

>>> dict = {'a':1l, 'b':2, 'c¢':3, 'd':4}
>>> list(dict.items())
[('a', 1), ('D', 2), ('c', 3), ('d', 4)]

* Can loop though key/value pairs as tuples:

for key, value in dict.items():

print(str(key) + " -> " + str(value))
Output
a >1
b -> 2
c -> 3
d -> 4

Tuples in Dictionaries

e Can use tuples as keys in dictionaries:

>>> dict = {('a', 1):10, ('b',1):20, ('a', 2): 30}
>>> list(dict.keys())

[('a', 1), ('D', 1), ('a', 2)]

>>> list(dict.values())

[10, 20, 30]

* Can use tuples as values in dictionaries:

>>> colors = { 'orange': (255, 165, 0),
'vellow': (255, 255, 0),
'aqua': (0O, 128, 128) }

>>> list(colors.values|())

[(255, 165, 0), (255, 255, 0), (0, 128, 128)]

>>> list(colors.keys())

['orange', 'yellow', 'aqua']

Putting 1t all together:
colors.py

Sorting

Basic Sorting

* The sorted function orders elements in a collection in
increasing (non-decreasing) order
— Can sort any type that support < and == operations
— For example: int, float, string
— sorted returns new collection (original collection unchanged)

>>> nums = [8, 42, 4, 8, 15, 16]
>>> sorted list = sorted(nums)
>>> sorted list

[4, 8, 8, 15, 16, 42]

>>> nums
[8, 42, 4, 8, 15, 16] # original list not changed
>>> strs = ['banana', 'zebra', 'apple', 'donut']

>>> sorted(strs)
['apple', 'banana', 'donut', 'zebra']

Intermediate Sorting

e Can sort elements in decreasing (non-increasing) order
— Use the optional parameter reverse=True
>>> nums = [8, 42, 4, 8, 15, 16]

>>> sorted(nums, reverse=True)
[42, 16, 15, 8, 8, 4]

>>> strs = ['banana', 'CHERRY', 'apple', 'donut']
>>> sorted(strs, reverse=True)
['donut', 'banana', 'apple', 'CHERRY']

* Note case sensitivity of sorting strings!
— Any uppercase letter is less than any lowercase letter
— For example: 'z2' < 'a’

Advanced Sorting

e Sorting using a custom function

— Use the optional parameter key=<function name>

def get len(s):

return len(s)

def main() :
strs = ['a', 'bbbb', 'cc', 'zzz']

sorted strs = sorted(strs, key=get len)

print (sorted strs)

Output:
['a', 'cc', 'zzz', 'bbbb']

Super Deluxe Advanced Sorting

e Sorting a list of tuples with a custom function
— Use the optional parameter key=<function name>

def get count (food):
return food[1l]

def main|() :
foods = [('apple', 5), ('banana', 2), ('chocolate',6 137)]
sort names = sorted(foods)
print (sort names)
sort count = sorted(foods, key=get count)
print (sort count)
rev_sort count = sorted(foods, key=get count, reverse=True)
print (rev_sort count)

Output:

[('apple', 5), ('banana', 2), ('chocolate',K 137)]
[('banana', 2), ('apple', 5), ('chocolate',K 137)]
[('chocolate', 137), ('apple', 5), ('banana', 2)]

Learning Goals

1. Learning about tuples in Python
2. Writing code using tuples
3. Learning about sorting

