Classes + Objects

Chris Piech and Mehran Sahami
CS106A, Stanford University

Housekeeping

F_ %

|-

 Hope you're well
* Diagnostic will be graded this weekend

e The Stanford Honor Code

— CS106A retraction policy
— Deadline to retract any assignments: Nov. 16th

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Object-Oriented Programming
(OOP)
It's not a mistake!

Object-Oriented Programming

There are different paradigms in programming

So far, you've learned imperative programming

— Provide series of direct commands for program execution
— Commands are changing the program's state

Object-oriented programming

— Define objects that contain data and behavior (functions)
— Program is (mostly) an interaction between objects

— You are calling function of objects (called "methods")

Python allows for programming in either paradigm!

— Other programming paradigms exist, but we won't talk
about those in this class

What are Classes and Objects?

e Classes are like blueprints
— They provide a template for a kind of object
— They define a new type
— E.g., "Human" would be a class

* Generally, have two arms, have two legs, breathe air, etc.

« Objects are instances of Classes
— Can have multiple objects of the same Class type
— E.g., You would be an instance of the Human class
* So, you have the properties of your Class (Human)

— There are lots of other people out there too
* You are all of type "Human"

* You are all objects of the same Class

Let's create a Counter class

— Can ask is for the "next" ticket number

— Need to keep track of next ticket number

— Class names start with Uppercase character
— Nomain () function (Class is not a program)

Example of a Class in Python

class Counter:

Construct
def init "(self):

self.ticket num = 0 # "instance" wvariable

<iVTWO (or double) underscores — called "dunder" for short

Method (function) that returns next ticket wvalue
def next value (self):

self.ticket num += 1

return self.ticket num

Let's See It In Action:
counter.py

Objects are Mutable

* When you pass an object as a parameter, changes to
object in that function persist after function ends

from counter import Counter # import the Class

def count two times (count):
for i in range(2):
print (count.next value())

def main() :

countl = Counter () c 1
- | Countl:
count2 = Counter () CDUtpUt° 1
print ('Countl: ') 2
count two_times (countl) Count2:
1
print('Count2: ') 2
count two times (count2) Countl :
print('Countl: ') 3
count two_ times (countl) 4

General Form for Writing a Class

* Filename for class is usually classname.py
— Filename is usually lowercase version of class name in file

class Classname:

Constructor
def init (self, additional parameters) :

body
self.variable name = value # example instance variable

Method
def method name (self, additional parameters) :
body

Constructor of a Class

* Constructor

— Syntax:
def init (self, additional parameters) :

body

e Called when a new object is being created
— Does not explicitly specify a return value
— New object is created and returned

e Can think of constructor as the "factory" that creates
new objects

— Responsible for initializing object (setting initial values)

— Generally, where instance variables are created (with self)
self.variable name = value # create instance variable

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() :
countl = Counter ()
count2 = Counter ()
x = countl.next value()
y = count2.next value()

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:

self.variable name = value

— Self really refers to the object that a method is called on

X =
y =

def main() :
countl = Counter ()
count2 = Counter ()
countl.next value()
count2.next value ()

def init (self):

self.ticket num = 0

countl —

self.ticket num

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() :
countl = Counter ()
count2 = Counter ()
x = countl.next value()

y = count2.next value ()

countl = | celf.ticket num | 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() : def init (self):

countl = Counter () self.ticket num = 0

count2 = Counter ()
x = countl.next value()
y = count2.next value()

countl = | celf.ticket num | 0

count2 — self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() :
countl = Counter ()
count2 = Counter ()
x = countl.next value()
y = count2.next value()

countl = | celf.ticket num | 0

count2 —

self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on
countl

def main() :

countl = Counter ()
count2 = Counter ()
x = countl.next value()

def next value(self):
self.ticket_pum +=1
return self.ticket num

y = count2.next value ()

countl = | celf.ticket num | 0

count2 —

self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on
countl

def main() :

countl = Counter ()
count2 = Counter ()
x = countl.next value()

def next value(self):
self.ticket_pum +=1
return self.ticket num

y = count2.next value ()

countl — self.ticket num 1

count2 —

self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() :
countl = Counter ()
count2 = Counter ()
x = countl.next value()
y = count2.next value()

countl — self.ticket num 1

count2 —

self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on
count2

def main() :

countl = Counter ()
count2 = Counter ()
x = countl.next value()

def next value(self):
self.ticket_pum +=1
return self.ticket num

y = count2.next value()

countl — self.ticket num 1

count2 —

self.ticket num 0

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on
count2

def main() :

countl = Counter ()
count2 = Counter ()
x = countl.next value()

def next value(self):
self.ticket_pum +=1
return self.ticket num

y = count2.next value()

countl — self.ticket num 1

count2 —

self.ticket num 1

Instance Variables

* |Instance variables are variable associated with objects

— Each object get its own set of instance variables

— Generally, they are initialized in constructor for class

— Instance variables accessed using self:
self.variable name = value

— Self really refers to the object that a method is called on

def main() :
countl = Counter ()
count2 = Counter ()
x = countl.next value()
y = count2.next value()

countl — self.ticket num 1

count2 —

self.ticket num 1

Methods (Functions) in Class

 Methods (name used for functions in objects)

— Syntax:
def method name (self, additional parameters) :
body

* Works like a regular function in Python
— Can return values (like a regular function)

— Has access to instance variables (through self):
self.variable name = value

— Called using an object:
object_name.method_name (additional parameters)

— Recall, parameter self is automatically set by Python as the
object that this method is being called on

* You write: number = countl.next value()
* Python treats it as: number = next value(countl)

Another Example: Students

 Want a Class to keep track information for Students
— Each student has information:
* Name
* ID number
* Units completed

— Want to specify a name and ID number when creating a
student object

* Initially, units completed setto O
— Student's number of units completed can be updated over
time
— Also want to be able to check if a student can graduate

* Student needs to have at least uNITS TO GRADUATE units

Bring Me the Students!
student.py

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

class S"“\\\eg:

def init (self):

self.tasty = True

def eat (self) :
print ("Nom, nom, nom...")
return self.tasty

from \W import \\ﬁ
def main():

meal = \\wﬁ()

while True:
happy = meal.eat()

