
Piech + Sahami, CS106A, Stanford University

Classes + Objects
Chris Piech and Mehran Sahami

CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Housekeeping

• Hope you're well

• Diagnostic will be graded this weekend

• The Stanford Honor Code

– CS106A retraction policy

– Deadline to retract any assignments: Nov. 16th

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Piech + Sahami, CS106A, Stanford University

Object-Oriented Programming

(OOP)

It's not a mistake!

Piech + Sahami, CS106A, Stanford University

Object-Oriented Programming

• There are different paradigms in programming

• So far, you've learned imperative programming

– Provide series of direct commands for program execution

– Commands are changing the program's state

• Object-oriented programming

– Define objects that contain data and behavior (functions)

– Program is (mostly) an interaction between objects

– You are calling function of objects (called "methods")

• Python allows for programming in either paradigm!

– Other programming paradigms exist, but we won't talk
about those in this class

Piech + Sahami, CS106A, Stanford University

What are Classes and Objects?

• Classes are like blueprints

– They provide a template for a kind of object

– They define a new type

– E.g., "Human" would be a class

• Generally, have two arms, have two legs, breathe air, etc.

• Objects are instances of Classes

– Can have multiple objects of the same Class type

– E.g., You would be an instance of the Human class

• So, you have the properties of your Class (Human)

– There are lots of other people out there too

• You are all of type "Human"

• You are all objects of the same Class

Piech + Sahami, CS106A, Stanford University

Example of a Class in Python

• Let's create a Counter class

– Can ask is for the "next" ticket number

– Need to keep track of next ticket number

– Class names start with Uppercase character

– No main() function (Class is not a program)

class Counter:

Constructor

def __init__(self):

self.ticket_num = 0 # "instance" variable

Method (function) that returns next ticket value

def next_value(self):

self.ticket_num += 1

return self.ticket_num

Two (or double) underscores – called "dunder" for short

Piech + Sahami, CS106A, Stanford University

Let's See It In Action:

counter.py

Piech + Sahami, CS106A, Stanford University

Objects are Mutable

• When you pass an object as a parameter, changes to
object in that function persist after function ends

from counter import Counter # import the Class

def count_two_times(count):

for i in range(2):

print(count.next_value())

def main():

count1 = Counter()

count2 = Counter()

print('Count1: ')

count_two_times(count1)

print('Count2: ')

count_two_times(count2)

print('Count1: ')

count_two_times(count1)

Count1:

1

2

Count2:

1

2

Count1:

3

4

Output:

Piech + Sahami, CS106A, Stanford University

General Form for Writing a Class

• Filename for class is usually classname.py
– Filename is usually lowercase version of class name in file

class Classname:

Constructor

def __init__(self, additional parameters):

body

self.variable_name = value # example instance variable

Method

def method_name(self, additional parameters):

body

Piech + Sahami, CS106A, Stanford University

Constructor of a Class

• Constructor
– Syntax:

def __init__(self, additional parameters):

body

• Called when a new object is being created

– Does not explicitly specify a return value

– New object is created and returned

• Can think of constructor as the "factory" that creates
new objects

– Responsible for initializing object (setting initial values)

– Generally, where instance variables are created (with self)
self.variable_name = value # create instance variable

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

def __init__(self):

self.ticket_num = 0

count1
self.ticket_num 0

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

def __init__(self):

self.ticket_num = 0

count1
self.ticket_num 0

count2
self.ticket_num 0

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

count2
self.ticket_num 0

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 0

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count1

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count1

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 0

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count2

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

count1
self.ticket_num 1

count2
self.ticket_num 1

def next_value(self):

self.ticket_num += 1

return self.ticket_num

count2

Piech + Sahami, CS106A, Stanford University

Instance Variables

• Instance variables are variable associated with objects

– Each object get its own set of instance variables

– Generally, they are initialized in constructor for class

– Instance variables accessed using self:
self.variable_name = value

– Self really refers to the object that a method is called on

count1
self.ticket_num 1

count2
self.ticket_num 1

def main():

count1 = Counter()

count2 = Counter()

x = count1.next_value()

y = count2.next_value()

Piech + Sahami, CS106A, Stanford University

Methods (Functions) in Class

• Methods (name used for functions in objects)
– Syntax:

def method_name(self, additional parameters):

body

• Works like a regular function in Python

– Can return values (like a regular function)

– Has access to instance variables (through self):
self.variable_name = value

– Called using an object:
object_name.method_name(additional parameters)

– Recall, parameter self is automatically set by Python as the
object that this method is being called on

• You write: number = count1.next_value()

• Python treats it as: number = next_value(count1)

Piech + Sahami, CS106A, Stanford University

Another Example: Students

• Want a Class to keep track information for Students

– Each student has information:

• Name

• ID number

• Units completed

– Want to specify a name and ID number when creating a
student object

• Initially, units completed set to 0

– Student's number of units completed can be updated over
time

– Also want to be able to check if a student can graduate

• Student needs to have at least UNITS_TO_GRADUATE units

Piech + Sahami, CS106A, Stanford University

Bring Me the Students!

student.py

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about Object-Oriented Programming
2. Writing code using Classes and Objects in Python

Piech + Sahami, CS106A, Stanford University

class :

def __init__(self):

self.tasty = True

def eat(self):

print("Nom, nom, nom...")

return self.tasty

from import

def main():

meal = ()

while True:

happy = meal.eat()

