Classes + Memory

-~ 4 Chris Piech and Mehran Sahami] ‘
- | CS106A, Stanford University |
X >

Remember this?

Bouncing Balls

BouncingBalls

@
N\

Housekeeping

* Hope you are all doing well

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Some large programs are in Python

3 YouTube

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

c
»
D
.
L
N
»
S
J

How?

Piech + Sahami, CS106A, Stanford University

You Have Been Using Variable Types

SimpleImage Canvas

Karel

String int

What would it take to define your own?

type

Classes define new variable
types

Piech + Sahami, CS106A, Stanford University

Classes decompose your
program across files

Piech + Sahami, CS106A, Stanford University

Classes are like blueprints

class: A template for a new type of variable.

¥ Blueprint for student

— P | Whe
o ar;
SAOCICIC 2 50U e
ne\p i ey, ke

You must define three things

—
/ Instance Variables

1. What sub-variables does each instance store?

/ Instance Methods
2. What can you call on an instance?

Constructor
3. What happens when you make a new one?

*details onhow to: define these three thingsicoming soon

Classes Review

dog_py life.py
™) (. N\
class Dog: def main():
def __init_ (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

Classes Review

dog_py life.py
™ 4 . N\
class Dog: def main():
def— init (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

1. What variables does each instance store?

Classes Review

dog.py

7

class Dog:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

life.py

(

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict_)
print(juno.__dict__)

2. What methods can you call on an instance?

Classes Review

dog_py life.py
™ 4 . N\
cl Doan- def maln() :
def __init_ (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

3. What happens when you make a new one?

Classes Review

dog_py life.py
™) (. N\
class Dog: def main():
def __init_ (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

Classes Review

dog.py

class Dog:
def __init_ (self):
self.times_barked = 0

def bark(self):
print('woof")
self.times_barked += 1

Did | mention that a class is like a fancy dictionary?

life.py

f

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict_)
print(juno.__dict__)

What is self?

dog_py life.py
™) (. N\
class Dog: def main():
def __init_ (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

When authoring a class, se LT means:
"the instance (aka object) | am currently working with"

What does a

do?

A class defines a new variable type

How many variables for the ball?

1. oval
2. change x
3. change vy

How many variables for 3 balls?

@ BouncingBalls

O
N\

1: Store a list of dictionaries

2: Store a list of Balls

Recall Functions?

Coder: Function Coder: Function
Author Caller

Writes helper functions Uses helper functions
others can use

Piech + Sahami, CS106A, Stanford University

Classes also split up the work!

Coder: Class Coder: Class
Author Client
@ 9
N)
Writes the class (often in its Uses the new
own file), thus defining a variable type to solve
new variable type problems (often from

main).
‘ Because they are classy

w Benrerg el oy

def maini):

» " .
¥y O o B e D)

lcanvas = Canvas (CANVAS _WIDTH, CANVAS_MEIGMT,
)

while True:

- {nd
< O3t ~

for) -
ball.updatel(canvas)

g |
-~ ! Folw 1Ive

canvas.updatel()
tinme.sleep(l/Se.)

def create_ballsi{canvas):
balls = [)

ball = Balllcanvas)

balls.appendi{ball)

Class Client: Uses the new variable type to
solve problems (often from main).

isport randoms
from constants import »

class Ball:

"

' s) A # 4 * My .
) - i y o * Vi ' ' Y

det init (self, canvas):

"

x 1 » random. randint(®, CANVAS _WIDTH - BAL
y.1 = random, randint (@, CANVAS_HEIGHT - BJ
¥ 727 » ¥ 1 & RAIY STTF

PN

Class Author: Writes the class, thus defining

Next step in writing large programs:
Better understand memory

You are now ready...

What does this do?

def main():
X =5
print(id(x))
X += 1
print(id(x))

What doe

d

X =5

print(id(x))
X += 1
print(id(x))

s this do?

stack

main

X

4563589904

oW

heap

Overheqqd

What does this do?

d

X =5

print(id(x))
X += 1
print(id(x))

stack

heap

main

X

4563589904

int

qov? 5

type

What does this do?

def main():

=D
(grint(id(x))]
X +=1
print(id(x))

stack heap
main int type
- ’ — 1 ref ¢
x| 4563589904 ? ount
— \10\\}6 \ 5 y

What does this do?

def main():
X =5

|x += 1 l

print(1d(x))

stack

main

X

4563589904

ﬂ&”z

heap

7~

int

1

5

type

What does this do?

def main():
X =5

|x =X + 1 l

print(1d(x))

stack

main

X

4563589904

\10\"@

heap
. \ 4563589904
int type
]. ref count
5

What does this do?

def main():

X =5
pri '))
X =|Ix + 1

print(id(x))

stack heap
main int
. | — 1
X 4563589904 ?
L | >
int
0
\10\\}6 \ 6

\ 4563589904

type

? 4563589936

What does this do?

def main():
X =5

|x =X + 1 l

print(1d(x))

stack

main

X

]

4563589936 !

y

\‘;\\}e

ﬂ&&e

heap
, \ 4563589904
int type
O l"ef: CoUn-I.
5
4563589936
int
1
6

What does this do?

def main():
X =5
print(id(x))

= X + 1
(v

rint(id(x))]

stack

main

X

\

]

4563589936 !

y

2
\l;\uL

N

o\we

heap
, \ 4563589904
int type
O T‘ef: CoUn-I.
5
4563589936
int
1
6

é N

main

% I 4563589936 &

Pt
binky

y 234589936 &

P
pinky

2 I 9993589936 &

The stack

o o

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, its
frame is destroyed.

o\we

The heap

\ 4563589904

int type Where values are stored
0 ref count
2) Every value has an address
4563589936 (like a URL address)
int 1 type
1
6

Memory is recycled when its
no longer used.

ref count Values don’t go away when
functions return

Deconstructed Samosa

def main():

What does this do?

def main():

=5
|x=|x+1

When a variable is “assigned”
via binding you are changing its
reference

You know a variable is being
assigned to if it is on the left
hand side of an = sign

What does this do?

def main():

i:[f‘(+1]

When a variable is “used”
you are accessing its value

What does this do?

[def main():]
X = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

Stack

main

X

What does this do?

Stack

main

X 5563936 -

binky(9)

def binky(y):
pinky(y)

def pinky(z): 5563936 (

print(z) -

What does this do?

Stack

main

def main():

= 5
[_ﬁinky(9)]

def binky(y):
pinky(y)

X 5563936 -

def pinky(z): 5563936 (
print(z) -

What does this do?

Stack

main

def main():
X 5563936 -
X = K —

binky(9)

| def binky(y):]
pINKy (y)

def pinky(z): 5563936 (

print(z) -

What does this do?

Stack
def main(): -
W = 5 } X 5563936 ‘
binky (9) pinky
y 9563936
| def binky(y):]
P1NKy(Yy)
def pinky(z): 5563936 (" 1np
print(z) 7
5
9563936 [int <
1
A\ 9 y

What does this do?

def main():
X = §
binky(9)

de ' :
| pinky(y)i

def pinky(z):
print(z)

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

What does this do?

Stack
def main(): —
v — E | X 5563006 -
binky(9) binky
y 9563936
def _binkv(v):
pinky(y)
[def pin ky(Z) :] 5563936 (1pp
print(z) 1
5
0563036 [int
1
\, 9 y

What does this do?

Stack
def main(): el
< = 5 ’ X 5563936;
binky(9) binky
y 9563936
def binky(v): T oy
leKY(Y) z 9563936
[def pinky(;){] 5563936 (T <)
print(z) 1
5
0563936 [e <
2
o 9 Yy

What does this do?

def main():
X = §
binky(9)

def _binkv(v):

pinky(y)

def _pinky(z):
print(z)

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

pinky

y

z 9563936

int

What does this do?

def main():
X = §
binky(9)

def _binkv(v):

pinky(y)

def pinky(z):

print(z)

i

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

pinky

y

z 9563936

int

What does this do?

def main():
X = §
binky(9)

def binky(y):

D pinky(y)

def pinky(z):

print(z)

5563936

9563936

Stack

main

X 5563936 -

binky

y

y 9563936

What does this do?

Stack

main

def main():

X = 5 X 5563936
U binky(9)
def binky(y):
pinky(y)
def pinky(z): 5563936 (" 1np
print(z) 7
5
9563936 [int <
0
\ 9 y

What does this do?

Stack

main

def main():
X—5 X 99563936 -

U biaky(9)

def binky(y):
pinky(y)

def pinky(z): 5563936 (
print(z) -

What does this do?

def main():
X =5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

) G

the real matri

IS IS

Th

The matrix origins

http://www.pythontutor.com/visualize.html

def main():
X = [Ial’ Ibl, |C|]
update(x)

def update(x):
for v 1n Xx:
print(type(v), v)
v=v+ '
print(v)

if __name__ == ' main__
main()

http://www.pythontutor.com/visualize.html

What is se 117

What does this do?

class Dog:
def init_ (self, name):

self.name = new_name
print(self.name)

put i1n another file...
def main():
first = Dog('simba')

print(type(first))
print(id(first))
print(first. dict_)

What does this do?

Stack
class Dog: mamn
def _init_ (self, new_name):
self.name = new_name \ J

print(self.name)

+ put 38 angther file...
! =—bB0g('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first. _dict_)

What does this do?

Stack
class Dog: main
def _init_ (self, new_name):
self.name = new_name \
print(self.name)
put in another file...
def main()A
flrstd=_Dog(simba’) Heap
second = 42 Dog
reference count 1

print(type(first))
print(id(first))
print(first. _dict_)

What does this do?

Stack
C . main
'def __init__ (self, new_name):] first
second
self.name = new_name . L
print(self.name) Dog.__init__
)) self 42
put 1n another file... —
def main() new_name ‘simba
u G 4
. —_ | . ’
first =\ Dog('simba’) Heap
second = 42
Dog
reference count 1

print(type(first))
print(id(first))
print(first.__dict__)

What does this do?

class Dog:

def _init_ (self, new_name):

self.name = new_name

put in another file...
def main()A
first =|Dog('simba’)
second = '

42

reference count

print(type(first))
print(id(first))
print(first. _dict_)

name

Stack

main

first

second

>
Dog. init

L

self 42

\,

new_name ‘simba’

J

Heap

Dog

1

‘simba’

What does this do?

class Dog:

def _init_ (self, new_name):

= me

print(self.name)

put in another file...
def main()A
first =|Dog('simba’)
second = '

42

reference count

print(type(first))
print(id(first))
print(first. _dict_)

name

Stack

main

first

second

Dog. init

self 42

new_name ‘simba’

\,

> L

J

Heap
Dog

1

‘simba’

What does this do?

class Dog:

def _init_ (self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main()A
first =|Dog('simba’)
second = '

42

reference count

print(type(first))
print(id(first))
print(first. _dict_)

name

Stack

main

first

second

Dog. init

self 42

new_name ‘simba’

\,

> L

J

Heap
Dog

1

‘simba’

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first
second
self.name = new_name \ J
print(self.name)
put in another file...
def main(). 42
flrstd=_Dog(simba’) _ Heap
second = 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) \ /

print(first. _dict_)

What does this do?

class Dog:
def _init_ (self, new_name):

self.name = new_name
print(self.name)

put in another file...
9 ;

42

first = bog('simba’)

42

reference count

print(type(first)) name
print(id(first))
print(first. dict_)

Stack

main

first

42

\,

second

Heap

Dog

‘simba’

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
second
self.name = new_name \ J
print(self.name)
put in another file...
def main():
= i , Heap
second = Dog(‘juno’) 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) \ /

print(first. _dict_)

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
second
self.name = new_name \ J
print(self.name)
put in another file...
def main():
first = 'S '
i , , Heap .
second —iDog(juno)l 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) \ /

print(first. _dict_)

What does this do?

class Dog:
def _init_ (self, new_name):

self.name = new_name
print(self.name)

put in another file...

def main():
first = 'S] ‘
second =|Dog(‘juno’) 42
reference count
print(type(first)) name
print(id(first)) 48

print(first. _dict_)

reference count

Stack

main

first 42

\,

second

What does this do?

cl :
def init (self, new_name):]

self.name = new_name
print(self.name)

put in another file...

def main():
first = '] :
second =|Dog(‘juno’) 42
reference count
print(type(first)) name
print(id(first)) 48

print(first. _dict_)

reference count

Stack

main

first 42

second

\

L
Dog. init

self 48

\,

new_name ‘juno’
S

Heap

Dog

What does this do?

Stack
class Dog: main
def __init__ (self, new_name): first 42
second
self.name = new_name . L
' - Dog. init
)) self 48
put 1n another file... —
def main(): Lnew_name juno)
flrstdz_ ogt < x Hean
secona =|bogl(juno 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) 48
print(first.__dict_) o .
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
second
[= N > . A
print(self.name) Dog.__init__
. . self 48
put 1n another file... —
def main(): Lnew_name juno)
flrstdz_ ° ;.- :) Heap
second =|bogl juno 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) 48
print(first. dict) o -
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init__ (self, new_name): first 42
second
self.name = new_name . L
print(self.name) Dog.__init__
)) self 48
put 1n another file... —
def main() : Lnew_name juno)
flrstdz_ ogt < x Hean
second =|Dog(‘juno 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) 48
print(first.__dict_) o .
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
second
self.name = new_name \ J
print(self.name)
put in another file...
def main():
first = o~) 48 Hea
‘9 ’ o 4 p N
second =|Dog(‘juno’) 42 Dog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) P e —
print(first._ _dict_) o -
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
second 48
self.name = new_name \ J
print(self.name)
put in another file...
def main():
= I i : 48 Heap
second = Dog(‘juno’) 2 (T pog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) P e —
print(first._ _dict_) o -
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init_ (self, new_name): first 42
second 48
self.name = new_name \ J
print(self.name)
put in another file...
def main():
flrstdz_Dgg((§;mba’g Heap
second = Dog(‘juno 42 Dog
reference count 1
print(type(_firSt))] name ‘'simba’
Sst)) 4y ——lg
print(first._ _dict_) o -
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: mam
def __init__ (self, new_name): first 42
second 48
self.name = new_name \ J
print(self.name)
put in another file...
def main():
. —_ | . ’
flrstd— Dgg((§;mba’; Heap
second = Dog(‘juno 42 Dog
reference count 1
name ‘'simba’
S —
48 Dog
reference count 1
name | juno’ |

What does this do?

Stack
class Dog: main
def __init (self, new_name): first 42
second 48
self.name = new_name \ J
print(self.name)
put in another file...
def main():
first =_Dog('§imba:) Heap
second = Dog(‘juno’) 2 (T pog
reference count 1
print(type(first)) name ‘'simba’
print(id(first)) P —
[print(first.__dict__)] _' -
reference count 1
name | juno’ |

Challenge: Trace This!

dog_py life.py
™) (. N\
class Dog: def main():
def __init_ (self): simba = Dog()
self.times_barked = @ juno = Dog()
def bark(self): simba.bark()
print('woof"') Jgno.bark()
self.times_barked += 1 simba.bark()
) print(simba.__dict_)
print(juno.__dict__)

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Bouncing Balls

BouncingBalls

@
N\

What does a

do?

A class defines a new variable type

