
Piech + Sahami, CS106A, Stanford University

Classes + Memory
Chris Piech and Mehran Sahami

CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Remember this?

Piech + Sahami, CS106A, Stanford University

Bouncing Balls

Piech + Sahami, CS106A, Stanford University

Housekeeping

• Hope you are all doing well

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Piech + Sahami, CS106A, Stanford University

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Piech + Sahami, CS106A, Stanford University

Some large programs are in Python

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

How?

Piech + Sahami, CS106A, Stanford University

Define New Variable Types

Song UserPlaylist

Song Player Song Retriever

Piech + Sahami, CS106A, Stanford University

You Have Been Using Variable Types

SimpleImage Canvas

String

What would it take to define your own?

int

Karel

Piech + Sahami, CS106A, Stanford University

type

Piech + Sahami, CS106A, Stanford University

Classes define new variable
types

Piech + Sahami, CS106A, Stanford University

Classes decompose your
program across files

Piech + Sahami, CS106A, Stanford University

class: A template for a new type of variable.

A blueprint is a

helpful analogy

Classes are like blueprints

Blueprint for student
When defining

a new variable
type you make
a blueprint

Piech + Sahami, CS106A, Stanford University

You must define three things

1. What sub-variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?

*details on how to define these three things coming soon

Instance Variables

Instance Methods

Constructor

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Classes Review

1. What variables does each instance store?

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Classes Review

2. What methods can you call on an instance?

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

dog.py life.py

Classes Review

3. What happens when you make a new one?

Piech + Sahami, CS106A, Stanford University

.__dict__

peda
gogic

al to
ol

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Classes Review

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

dog.py life.py

Classes Review

Did I mention that a class is like a fancy dictionary?

Piech + Sahami, CS106A, Stanford University

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

dog.py life.py

What is self?

When authoring a class, self means:
"the instance (aka object) I am currently working with"

Piech + Sahami, CS106A, Stanford University

What does a class do?

Piech + Sahami, CS106A, Stanford University

A class defines a new variable type

Piech + Sahami, CS106A, Stanford University

How many variables for the ball?

1. oval
2. change_x
3. change_y

Piech + Sahami, CS106A, Stanford University

How many variables for 3 balls?

Piech + Sahami, CS106A, Stanford University

1: Store a list of dictionaries

2: Store a list of Balls

Piech + Sahami, CS106A, Stanford University

Coder: Function
Author

Coder: Function
Caller

Uses helper functionsWrites helper functions
others can use

Recall Functions?

Piech + Sahami, CS106A, Stanford University

Coder: Class
Author

Coder: Class
Client

Uses the new
variable type to solve
problems (often from

main).

Writes the class (often in its
own file), thus defining a

new variable type

Classes also split up the work!

Because they are classy

Piech + Sahami, CS106A, Stanford University

Class Author: Writes the class, thus defining
a new variable type (often in its own file)

Class Client: Uses the new variable type to
solve problems (often from main).

Piech + Sahami, CS106A, Stanford University

Next step in writing large programs:
Better understand memory

Piech + Sahami, CS106A, Stanford University

You are now ready…

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

overhead

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type
ref count

int
1

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type
ref count

int
1

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type
ref count

int
1

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589904
5 value

type
ref count

int
1

4563589904

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

5 value

type
ref count

int
1

6 value

type
ref count

int
0

4563589936

4563589904

4563589904

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589936
5 value

type
ref count

int
0

6 value

type
ref count

int
1

4563589936

4563589904

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x

heapstack

4563589936
5 value

type
ref count

int
0

6 value

type
ref count

int
1

4563589936

4563589904

Piech + Sahami, CS106A, Stanford University

The stack
main

x 4563589936

binky

y 234589936

pinky

z 9993589936

Each time a function is called,
a new frame of memory is
created.

Each frame has space for all
the local variables declared in
the function, and parameters

Each variable has a reference
which is like a URL

When a function returns, its
frame is destroyed.

Piech + Sahami, CS106A, Stanford University

The heap

5

type
ref count

int
0

4563589904
Where values are stored

6 value

type
ref count

int
1

4563589936

Values don’t go away when
functions return

Memory is recycled when its
no longer used.

Every value has an address
(like a URL address)

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
x = x + 1

Deconstructed Samosa

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
x = x + 1

What does this do?

When a variable is “assigned”
via binding you are changing its
reference

You know a variable is being
assigned to if it is on the left

hand side of an = sign

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
x = x + 1

What does this do?

When a variable is “used”
you are accessing its value

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
2

9563936

pinky

z 9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

binky

y 9563936

9

int
1

9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

9

int
0

9563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x

5

int
1

5563936

5563936

Piech + Sahami, CS106A, Stanford University

def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?

Piech + Sahami, CS106A, Stanford University

This is the real matrix…

Piech + Sahami, CS106A, Stanford University

The matrix origins

def main():
x = ['a', 'b', 'c']
update(x)

def update(x):
for v in x:
print(type(v), v)
v = v + '!'
print(v)

if __name__ == '__main__':
main()

http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html

Piech + Sahami, CS106A, Stanford University

What is self?

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self, name):

self.name = new_name
print(self.name)

put in another file...
def main():
first = Dog('simba')

print(type(first))
print(id(first))
print(first.__dict__)

What does this do?

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42
Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘simba’

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘simba’

name ‘simba’

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘simba’

name ‘simba’

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

42

‘simba’

name ‘simba’

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

42

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Heap

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

Heap

reference count

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘simba’

42

Dog
1

48

Heap

reference count

reference count

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘simba’

42

Dog
1

48

name ‘juno’

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘simba’

42

Dog
1

48

name ‘juno’

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

Dog.__init__

self

new_name

48

‘juno’

name ‘simba’

42

Dog
1

48

name ‘juno’

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

name ‘juno’

48

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

name ‘juno’

48

48

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

name ‘juno’

48

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

name ‘juno’

48

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second

Dog
1

42

name ‘simba’

42

Dog
1

48

name ‘juno’

48

reference count

reference count

Heap

Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Challenge: Trace This!

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Practice with classes
2. See how to trace memory with classes

Piech + Sahami, CS106A, Stanford University

Guiding question for today:

what does it take to go from
what you know to writing
big-scale software?

Piech + Sahami, CS106A, Stanford University

Bouncing Balls

Piech + Sahami, CS106A, Stanford University

What does a class do?

Piech + Sahami, CS106A, Stanford University

A class defines a new variable type

