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Remember this?
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Bouncing Balls
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Housekeeping

• Hope you are all doing well
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Learning Goals

1. Practice with classes
2. See how to trace memory with classes
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Guiding question for today:

what does it take to go from 
what you know to writing 
big-scale software? 
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Some large programs are in Python
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How?



Piech + Sahami, CS106A, Stanford University

Define New Variable Types

Song UserPlaylist

Song Player Song Retriever
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You Have Been Using Variable Types

SimpleImage Canvas

String

What would it take to define your own?

int

Karel
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type
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Classes define new variable 
types
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Classes decompose your 
program across files
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class: A template for a new type of variable.

A blueprint is a 

helpful analogy

Classes are like blueprints

Blueprint for student
When defining 

a new variable 
type you make 
a blueprint
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You must define three things

1. What sub-variables does each instance store?

2. What methods can you call on an instance?

3. What happens when you make a new one?

*details on how to define these three things coming soon

Instance Variables

Instance Methods

Constructor
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class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Classes Review
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3. What happens when you make a new one?
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def main():
simba = Dog()
juno = Dog()

simba.bark()
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dog.py life.py

Classes Review

Did I mention that a class is like a fancy dictionary?
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def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

dog.py life.py

What is self?

When authoring a class, self means:
"the instance (aka object) I am currently working with"
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What does a class do?
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A class defines a new variable type
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How many variables for the ball?

1. oval
2. change_x
3. change_y
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How many variables for 3 balls?
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# 1: Store a list of dictionaries

# 2: Store a list of Balls
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Coder: Function 
Author

Coder: Function 
Caller

Uses helper functionsWrites helper functions 
others can use

Recall Functions?
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Coder: Class
Author

Coder: Class 
Client

Uses the new 
variable type to solve 
problems (often from 

main).

Writes the class (often in its 
own file), thus defining a 

new variable type

Classes also split up the work!

Because they are classy
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Class Author: Writes the class, thus defining 
a new variable type (often in its own file)

Class Client: Uses the new variable type to 
solve problems (often from main).
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Next step in writing large programs:
Better understand memory
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You are now ready…
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def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?
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def main():
x = 5
print(id(x))
x += 1
print(id(x))

What does this do?

main

x 

heapstack

4563589904
5 value

overhead
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type
ref count
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1 
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def main():
x = 5
print(id(x))
x = x + 1
print(id(x))

What does this do?

main

x 

heapstack

4563589904
5 value

type
ref count

int
1 

4563589904



Piech + Sahami, CS106A, Stanford University

def main():
x = 5
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What does this do?
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x 

heapstack

5 value

type
ref count

int
1 

6 value

type
ref count

int
0 

4563589936

4563589904

4563589904
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The stack
main

x 4563589936

binky

y 234589936

pinky

z 9993589936

Each time a function is called, 
a new frame of memory is 
created.

Each frame has space for all 
the local variables declared in 
the function, and parameters 

Each variable has a reference 
which is like a URL

When a function returns, its 
frame is destroyed.
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The heap

5 

type
ref count

int
0 

4563589904
Where values are stored

6 value

type
ref count

int
1 

4563589936

Values don’t go away when 
functions return

Memory is recycled when its 
no longer used.

Every value has an address 
(like a URL address)
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def main():
x = 5
x = x + 1

Deconstructed Samosa
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def main():
x = 5
x = x + 1

What does this do?

When a variable is “assigned” 
via binding you are changing its 
reference

You know a variable is being 
assigned to if it is on the left 

hand side of an = sign
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def main():
x = 5
x = x + 1

What does this do?

When a variable is “used” 
you are accessing its value
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def main():
x = 5
binky(9)

def binky(y):
pinky(y)

def pinky(z):
print(z)

What does this do?
Stack
main

x
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5 

int
1 

5563936

5563936
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This is the real matrix…
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The matrix origins

def main():
x = ['a', 'b', 'c']
update(x)

def update(x):
for v in x:
print(type(v), v)
v = v + '!'
print(v)

if __name__ == '__main__':
main()

http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html
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What is self?
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class Dog:
def __init__(self, name):

self.name = new_name
print(self.name)

# put in another file...
def main():
first = Dog('simba')

print(type(first))
print(id(first))
print(first.__dict__)

What does this do?
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What does this do?

class Dog:
def __init__(self, new_name):

self.name = new_name
print(self.name)

# put in another file...
def main():

first = Dog('simba’)
second = Dog(‘juno’)

print(type(first))
print(id(first))
print(first.__dict__)

Stack
main

first

second
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What does this do?
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1 

42
Heap

reference count
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print(first.__dict__)

Stack
main

first

second

Dog 
1 

42

name ‘simba’

42

Dog 
1 

48

name ‘juno’

48

reference count

reference count

Heap



Piech + Sahami, CS106A, Stanford University

class Dog:
def __init__(self):

self.times_barked = 0

def bark(self):
print('woof')
self.times_barked += 1

def main():
simba = Dog()
juno = Dog()

simba.bark()
juno.bark()
simba.bark()

print(simba.__dict__)
print(juno.__dict__)

dog.py life.py

Challenge: Trace This!
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Learning Goals

1. Practice with classes
2. See how to trace memory with classes
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Guiding question for today:

what does it take to go from 
what you know to writing 
big-scale software? 
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Bouncing Balls
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What does a class do?
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A class defines a new variable type


