
Piech + Sahami, CS106A, Stanford University

Search Engines
Chris Piech and Mehran Sahami

CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Housekeeping

• Assignment #6 due today
• Assignment #7 goes out today
– Due Wednesday, Nov. 18th

– At most two late days can be used (free or otherwise) on it
• Challenging times
– Take care of yourselves and each other
– If you need help, please reach out

• Ethics mini-lecture from Katie Creel

Piech + Sahami, CS106A, Stanford University

Diagnostic 2 Histogram

0

20

40

60

80

100

120

140

160

180
0-

4

5-
8

9-
12

13
-1

6

17
-2

0

21
-2

4

25
-2

8

29
-3

2

33
-3

6

37
-4

0

41
-4

4

45
-4

8

49
-5

2

53
-5

6

57
-6

0

Median = 53 (88.3%)

Rock on. Polish?

Review

Getting
there

Conceptual review

Re-strategize
Perfect

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

And maybe some
bonus story time!

Piech + Sahami, CS106A, Stanford University

Search Engines

Piech + Sahami, CS106A, Stanford University

How to Build a Web Search Engine

• Crawling
– Find relevant documents to search over

• Indexing
– Record which terms appear in which documents

• Search
– Determine which documents match user's query

• Ranking
– Sort matching documents by "relevance" to user's query

• Serving
– Infrastructure to get queries and give results

• Interface
– User interface for presenting results to the user

Piech + Sahami, CS106A, Stanford University

In Assignment #7

• Crawling
– We will provide document collection for you to search

• Indexing
– You'll be writing this!

• Search
– You'll be writing this!

• Ranking
– Nothing fancy required, but great area for extensions

• Serving
– Not required, but great area for extensions (more soon)

• Interface
– Give you basic text interface, but great area for extensions

Piech + Sahami, CS106A, Stanford University

Indexing

• Inverted index (generally, just called an "index")
– Similar to index in back of a book
– For each word, you want to know where it is mentioned

• Mapping, where we have: term à list of documents
containing that term
– Term is the generic way we refer to a word, name, number,

etc. that we might want to look up

• Consider the example:
– Term "burrito" appears in the documents "recipes.txt",

"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"
– Term "sushi" appears in documents "favorites.txt" and

"Japanese foods.txt"
– Term "samosa" appears in document "appetizers.txt"

Piech + Sahami, CS106A, Stanford University

Representing an Index in Python

• Consider the example:
– term "burrito" appears in the documents "recipes.txt",

"greatest eats.txt", "top 10 foods.txt", and "favorites.txt"
– term "sushi" appears in documents "favorites.txt" and

"Japanese foods.txt"
– term "samosa" appears in document "appetizers.txt"

• In Python, use a dictionary to represent index
– Map from term (key) to list of documents (value)

index = {
'burrito': ['recipes.txt', 'greatest eats.txt',

'top 10 foods.txt', 'favorites.txt'],
'sushi': ['favorites.txt', 'Japanese foods.txt'],
'samosa': ['appetizers.txt']
}

Piech + Sahami, CS106A, Stanford University

Building an Index in Assignment #7

• Given a set of documents
– For each document, parse out all the terms:
• Terms are separated from each other by space (or newline)
• Terms should be converted to lowercase (for consistency)
• Terms need to have punctuation stripped off start/end
>>> raw = '$$j.lo!'
>>> term = raw.strip(string.punctuation)
>>> term
'j.lo'

• Example: Terms in 'doc1.txt':
– '*We*' should be converted to term 'we'
– 'are' should be converted to term 'are'
– '100,000' should be converted to term '100,000'
– 'STRONG!' should be converted to term 'strong'
– '$$' should be ignored. Punctuation by itself is not a term.

We are 100,000
STRONG! $$

'doc1.txt':

Piech + Sahami, CS106A, Stanford University

Building an Index in Assignment #7

• Example: Terms in 'doc1.txt':
– '*We*' should be converted to term 'we'
– 'are' should be converted to term 'are'
– '100,000' should be converted to term '100,000'
– 'STRONG!' should be converted to term 'strong'
– '$$' should be ignored. Punctuation by itself is not a term.

• Resulting index (dictionary) in Python would be:
{
'we': ['doc1.txt'],
'are': ['doc1.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt']

}

We are 100,000
STRONG! $$

'doc1.txt':

Note: Python would print the dictionary
all on one line. We just break it up on
multiple lines in our examples for clarity.

Piech + Sahami, CS106A, Stanford University

Building an Index in Assignment #7

• Now, say we indexed 'doc2.txt':
– 'Strong,' should be converted to term 'strong'
– 'you' should be converted to term 'you'
– 'are!' should be converted to term 'are'
– '--Yoda--' should be converted to term 'yoda'

• Updating our previous index with this data should give:
{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']

}

Strong, you are!
--Yoda--

'doc2.txt':

Piech + Sahami, CS106A, Stanford University

A Final Note on Indexing

• Often, files have some information
that we want to keep track of (such
as a title) for later display
– Here, first line of each file contains a title

that we want to keep track of
– The terms in the title line should still be

indexed like every other line in the file
• Build a mapping (dictionary) from file

names to titles (for later display):
{
'quote1.txt': 'Yoda quote',
'quote2.txt': "Gandhi's wisdom"

}

Yoda quote

Strong, you are!
--Yoda--

'quote1.txt':

Gandhi's wisdom

Be the change
that you wish to
see in the
world.
--Mahatma Gandhi

'quote2.txt':

Note: in the index of these files,
"gandhi's" would be a term
(with the apostrophe embedded)
since the apostrophe is not at the
end beginning/end of the term.

Piech + Sahami, CS106A, Stanford University

Search

• Once you have an index, searching is straightforward
– In the user interface, user enters a query

• Note: Terms in query will be separated by spaces and converted to
lowercase. (Can assume no punctuation before/after query terms.)

– For each term in query, we use the index to look up the list
of documents that the term appears in
• This list of documents is called a "posting list"

• For one term queries, the posting list from the index
directly provides the results to the query

• For multi-term queries, the way you combine posting
lists for each term determines how the search works

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists
– This would be comparable to doing a union with sets
– This corresponds to treating the query as a disjunction

• We return any document that contains any of the terms in query
• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
} Posting list:

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists
– This would be comparable to doing a union with sets
– This corresponds to treating the query as a disjunction

• We return any document that contains any of the terms in query
• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

['doc2.txt']

Posting list:

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can add together the results (uniquely) of all the
posting lists
– This would be comparable to doing a union with sets
– This corresponds to treating the query as a disjunction

• We return any document that contains any of the terms in query
• Logically, it's like using the connective "OR" between query terms

– Recall index:

– Query: "yoda strong"

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

['doc2.txt', 'doc1.txt']

Posting list:

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "are you yoda"
Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "are you yoda" ['doc1.txt', 'doc2.txt']

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "are you yoda" ['doc2.txt']

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "are you yoda" ['doc2.txt']

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "we are yoda"
Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "we are yoda" ['doc1.txt']

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "we are yoda" ['doc1.txt']

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Multi-Term Queries

• Can take the overlap of the results (uniquely) of all the
posting lists
– This would be comparable to doing an intersection with sets
– This corresponds to treating the query as a conjunction

• We return documents that contain every term in query
• Logically, it's like using the connective "AND" between query terms

– This is what you'll implement for Assignment #7
– Recall index:

– Query: "we are yoda" []

Posting list:

{
'we': ['doc1.txt'],
'are': ['doc1.txt', 'doc2.txt'],
'100,000': ['doc1.txt'],
'strong': ['doc1.txt', 'doc2.txt'],
'you': ['doc2.txt'],
'yoda': ['doc2.txt']
}

Piech + Sahami, CS106A, Stanford University

Let's take it out for a spin:
searchengine.py

Piech + Sahami, CS106A, Stanford University

Ranking Documents

• In Assignment #7, you just display the documents that
are considered matches to the query
– You are not ranking them in any particular order
– But, this is an area for cool extensions, so let's chat about it…

• One of the richest research areas in search is how to
rank documents (i.e., sort them by relevance to user)
– Doing this requires that we keep track of more information in

the index (e.g., store lists/tuples rather than just file names)
– Examples of additional information that's useful for ranking:

• Number of times a term appears in a document
• The positions of the terms in each document
• How rare particular terms are in the whole collection of documents
• How "popular" a document is (e.g., analyze link structure on the web)

Piech + Sahami, CS106A, Stanford University

Measures of Textual Similarity

• Classic approach: Documents/query similarity is a
function of term frequency within the document and
across all documents

• TF(w) = frequency of term w in a document/query
– Intuition: a word appearing more frequently in a document is

more likely to be related to its “meaning”

• IDF(w) = log (N/nw) + 1
where N = total # documents, nw is # documents containing w
– Intuition: words that appear in many documents (e.g., “the”)

are generally not very informative/contentful terms

• TFIDF: contribution of each term is product of these:
TFIDF(w) = TF(w) x IDF(w)

Piech + Sahami, CS106A, Stanford University

Using TFIDF to Measure Similarity
• Consider each document as a list/vector:

dog compute window ...

Doc. 1 = [3.2, 0, 1.2, ...]
Doc. 2 = [0, 2.1, 5.4, ...]
Doc. 3 = [0, 1.7, 0, ...]
• Lists/vectors are constructed such that

– Each element of list/vector represents a term wi

– Each element of list/vector has value: TFIDF(wi)
– Normalize the vectors to unit length (using Euclidean norm)

• Document similarity to another document or query is measured
using the cosine between the TFIDF vectors of the
documents/queries
– Cosine = vector dot product
– Called "Vector Space Model"

cosine

Piech + Sahami, CS106A, Stanford University

Learning Goals

1. Learning about search engines
2. Getting some hints on Assignment #7

What about that
bonus story time?!?

Piech + Sahami, CS106A, Stanford University

Bonus story time:
Google

(...before it was Google)

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Google's Beginnings
• In mid-1990's, Larry Page and Sergey Brin did research

as part of the Stanford Digital Library project
– Original project was called "BackRub"

• Large parts of Google were originally built in Python
– Here's some of that code (it's written in Python 1.4)

class RobotFileParser:

def __init__(self):
self.rules = {}

def parse(self, lines):
active = []
for line in lines:

blank line terminates current record
if not line[:-1]:

active = []
continue

remove optional comment and strip line
line = string.strip(line[:string.find(line, '#')])

...

Piech + Sahami, CS106A, Stanford University

http://google.stanford.edu

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

Google's Index (circa 2004)
• Too large to fit in memory for one machine
• Split index into pieces, called shards
– Shards are small enough to have several per machine
– Replicate the shards for robustness

• Need to still store original documents
– Want to show users “snippets” of query terms in context
– Use same sharding concept to store original documents

• Replicate this whole structure within/across data
centers

Piech + Sahami, CS106A, Stanford University

Google Web Server
Spell checker

Ad Server

I0 I1 I2 IN

I0 I1 I2 IN

I0 I1 I2 IN

R
ep

lic
as …

…

Index shards

D0 D1 DM

D0 D1 DM

D0 D1 DM

R
ep

lic
as …

…
Doc shards

query
Misc. servers

Index servers Doc servers

Elapsed time: 0.25s, machines involved: 1000+

Google Infrastructure (circa 2004)

Piech + Sahami, CS106A, Stanford University

google.stanford.edu (circa 1997)

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

google.com (1999)

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

Google Data Center (circa 2000)

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

Empty Google Data Center (2001)

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

3 Days Later…

Image courtesy of Google

Piech + Sahami, CS106A, Stanford University

A picture is worth a few hundred million search queries…

Image courtesy of Google

A Day in the Life of Google

