Functions

Chris Piech and Mehran Sahami
CS106A, Stanford University

e
'y e '

\‘ .

h

~
4 B

Boolean Variable

karel_i s _awesome = True

my bool = 1 < 2

Boolean Operations

a = True

b = False

both true = a and b
either true = a or b

opposite = not a

There is aniin for loop

for 1 in range(10):
print (i)

terminal

Vo NOTUTEWDNEDO

Game Show

® O GameShow

Welcome to the CS106A game show!
Choose a door and win a prize
Door: 2

You chose door 2

You win $-

Piech + Sahami, CS106A, Stanford University

Choose a Door

door = int(input("Door: "))
while the input is invalid
while[door < lﬁor[door > 3]:
tell the user the input was invalid
print("Invalid door!")
ask for a new input
door = int(input("Door: "))

or
and

The Door Logic

prize = 4

if door == 1:
prize = 2 + 9 // 10 * 100

elif door == 2:
locked = prize % 2 != 0
if not locked:
prize += 6

elif door == :
for 1 in range(door):
prize += 1

Learn How To:

1. Write a function that takes in input
2. Write a function that gives back output
3. Trace function calls using stacks

Calling functions

turn right()

move () input(“string please! ")

print (“hello world”)
float (V"0.42"7)

math.sqrt (25)

Defining a function

def turn right():
turn left()
turn left()
turn left()

Big difference with python functions:
Python functions can take in data, and can return data!

Contrasting Case

Thanks Dan Schwartz

Defining a function

def turn_right(): def move n(n moves):
turn left () for i in range(n moves):
turn left() move ()

turn left()

def main():
turn right ()
move n(10)

Big difference with python functions:
Python functions can take in data, and can return data!

Toasters are functions

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

* You don’t need a second toaster if you want to toast bagels. Use the same one. &

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

al®

’”’j::;—.—,_h)

T

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

Toasters are functions

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

functions are Like Toasters

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

functions are Like Toasters

Piech + Sahami, CS106A, Stanford University

Classic Challenge for CS106A

Perhaps the
most
underrated
concept by
students

Historical Aside

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

|”

def main () : function “cal
mid =[average(5.0, 10.2)]
print (mid)

function “definition”

(aef average (a, b):
sum = a + b

return sum / 2
_ J

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

Nname

def[averageka, b) :
sum = a + b
return sum / 2

Anatomy of a function

def main() : Input given
mid = averageBS.O, 10.2)]
print (mid)

Input expected

def averag#(a, b)t
sum = a +

return sum / 2

Anatomy of a function

def main() : Arguments
mid = averageBS.O, 10.2)]
print (mid)
Parameters

def averag#(a, b)r
sum = a +

return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):

sum = a + b
return sum / 2 body

Anatomy of a function

def main () : This call “evaluates” to the value returned
[mid =]average(5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b

[return sum / 2] Ends the function and gives
back a value

Anatomy of a function

Also a function call

rdef main () :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

No parameters (expects no input)

def mai

mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

When a function ends it “returns”

def average(a, b):
sum = a + b
return sum / 2

Formally

def name_of_function (parameters) :
statements
optionally
return value

name: information passed into function
parameters: information passed 1nto function

return: information given back from the function

Parameters

Parameters let
you provide a
function some
information
when you are
calling it.

Is returning
the same as printing?

Is returning
the same as printing?

NO

Anatomy of a function

Function caller

def main () :
mid = average (5.0, 10.2) m

print (mid)

Function author

def average(a, b):
sum = a + b
return sum / 2

.

Function author’s
contract - average:

If you call this

function you must
provide two params.
The function will give
back a return value

Function Function
Caller (Coder) Author (Coder)

User

Uses the Uses helper Writes helper

terminal functions functions
(later Ul)

Function Function
Caller (Coder) Author (Coder)

User

Waddle Meerkat
Uses the Uses helper Writes helper
terminal functions functions

(later Ul) others can

Learn by Example

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

- > python intro.p
def main() : Y Y

print intro()

No Parameter, No Return

function author

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

user

terminal

. > thon intro.
def main() : i i

print intro()

caller

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

- > python intro.p
def main() : Y Y

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

[def main () :
print intro()

] > python intro.py

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i i

[print;intro()]

No Parameter, No Return

[def print intro(): l
print("Welcome to class")

print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i i

print intro()

No Parameter, No Return

def print intro():

[print("Welcome to class") fJ
print ("It"s the best part of my day.")

terminal

> python intro.py

def main() : Welcome to class

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")

[%rint("It's the best part of my day.")

terminal

> python intro.py

def main() : Welcome to class

print intro () It’s the best part of my day

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

> python intro.py

def main() : Welcome to class
print intro () It’s the best part of my day

= '

terminal

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. . > python intro.py
def main() : Welcome to class

[print intro ()] It’s the best part of my day

%§§%

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. . > python intro.py
def main() : Welcome to class

print intro () It’s the best part of my day

= '

Parameter Example

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main() :
print opinion (5)

terminal

> python opinion.py

Parameter Example

main memory terminal
> python opinion.py
No variables
def print opinion (num) :
if(num == 5) :
print ("I love 5!7)
else
print (“Whattever”)
[def main () :]

print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
[print;ppinion(S)]

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables

def[;rint_ppinion(num):]
if (num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num

def print;ppinionknumf}
if(num == 5):
print ("I love 5!7)

else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print;ppinionknumf}
if(num == 5):
print ("I love 5!7)

else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print opinion (num) :
lif(num == 5)}

print ("I love 5!7)
else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if(num == 5) :
[print(“I love 5!")]
else
print (“"Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

i

def main() :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

i

def main() :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
[print_ppinion(S)]

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main () :
D print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables o | love 5!

def print opinion (num) :
if(num == 5):
print ("I love 5!7)
else
print (“"Whattever”)

def main() :
print opinion (5)

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

[def main () :]
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

def main () :
result =[meters_ﬁo_pm(5.2ﬂ
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
No variables

def[meters_to_pm(meters):]
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
No variables meters 5.2

def meters_ﬁo_pmkmetersﬂ:
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
No variables meters 5.2

def meters to cm(meters):
[return 100 * meters] 520.0

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
No variables

def meters to cm(meters):
return 100 * meters

def main() : 520.0
result =[E§ters_ﬁo_pm(5.2ﬂ
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520.0

def meters to cm(meters):
return 100 * meters

def main|() : 520.0
[result = meters_ﬁo_pm(S.Zﬂ
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520.0 o 520.0

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
[print(result)]

Parameter and Return Example

main memory

terminal

> python m2cm.py

result | 520.0 ' e 520.0
def meters to cm(meters): \Kﬂpﬂﬂﬂ-
return 100 * meters Cor curns, N Ca\\e\ed-
. radig™) egance
cqyorite P 2 op s ele’
This 1S ouf flexibie mo
s the M°

wetf main() :
result = meters to cm(5.2)
[print(result)]

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main () :
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

[def main():]
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main () :
print{ﬁeters_ﬁo_pm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() : 520.0
print{ﬁeters_ﬁo_pm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() : 520.0

[print(meters_ﬁo_pm(S.Z)”
print (meters to cm(d.

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_to_pm(Q.lﬂ)

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_to_pm(Q.lﬂ)

910.0

Parameter and Return Example

terminal

> python m2cm.py
520.0
910.0

def meters to cm(meters):
return 100 * meters

def main () :
print (meters to cm(5.2))
[ﬁrint(meters_to_pm(Q.l))]

910.0

Parameter and Return Example

terminal

> python m2cm.py
= 520.0
910.0

def meters to cm(meters):
return 100 * meters

def main(): m
print (meters to cm(5.2)) v

print (meters to cm(9.1))

How is this function
def meters to cm casel (meters):
return 100 * meters

Different than this function?
def meters to cm case2(meters):
print (100 * meters)

How is this function
def meters to cm casel (meters):
return 100 * meters A £

Different than this function?
def meters to cm case2(meters):
print (100 * meters)

When a function produces a
value does it print or return?

\;:rint

User receives value on the
console

Caller receives value.
Can store it and/or print it

Is returning
the same as printing?

Is returning
the same as printing?

NO

How is this function
def meters to cm casel():
meters = float(input("M: "))
return 100 * meters =

Different than this function?
def meters to cm case2 (meters):
return 100 * meters

When a function " =
requires a value does it v

call input itself?

parameter input

User inputs value within
the function. Seems nice,
but hard to build upon!

Fn author receives value.
Can store it and/or print it

Ideal flow of information: Input
input in caller

Y

t
‘% ES par%n =

def example caller():
data = float (input("enter:")
call the author (data)

Ideal flow of information: Input

input in caller

Y. &
A4 Print in caller
=

e

ata as par%n =

def example caller():
data = float (input("enter:")
result = call the author(data)
print (result)

Ideal flow of information: Input

input in caller

Y. &
A4 Print in caller
=

e

ata as par%n =

def main() :
meters = float (input ("meters:")
cms = meters to cm(meters)
print (cms + "cm")

As “1input”
the same as parameters?

As “1input”
the same as parameters?

NO

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

[def main () : 5]
Targer = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () :

terminal

> python maxmax.py

[larger = max (5, 1)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
larger = maka, 1”

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def maxknuml, num;ﬂ:
i1f num = numZ:

return numl

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

No variables num1l 5 num?2 1

def max (numl, num?2) : terminal
if numl >= num2:
> python maxmax.py

return numl

return num?2

def main () :
larger = max(5, 1)

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl]

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl] 5

return num2

def main() :
larger = max (5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory Max memory

No variables numi 5

num?2

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : S5
larger = maka, 1”

terminal

> python maxmax.py

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : 5
larger = maka, 1ﬂ

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () : 5
[larger = max (5, 1)]

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2) :
if numl >= num2:
return numl

terminal

> python maxmax.py

return num2

def main () :
D larger = max (5, 1)

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max (5, 1)

Multiple Return Statements

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

ldef main () : l
arger = max(l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
larger = maxkl, Sﬂ

Multiple Return Statements

main memory Max memory

No variables numl num2

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables numil 1 num?2 5

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num?2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables num1 1 num?2 5

def max(numl, num?) :
[if numl >= num2:|
return num

return num?2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory Max memory

No variables num1 1 num?2 5

def max(numl, num2):
if numl >= num?2:
return numl

[return num2] 5

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory

No variables

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () : 5
larger = max[l, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num?2:
return numl

return num?2

def main () : 5
[larger = max (1, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2) :
if numl >= num2:
return numl

return num2

def main () :
D larger = max(1l, 5)

1f extra time:

Function for 1O

What functions do you define?

Piech + Sahami, CS106A, Stanford University

