Chris Piech and Mehran Sahami
CS106A, Stanford University

= '

Housekeeping |

F_ %

-

* Assignment #2 due today
* Assignment #3 goes out today (Due on Wed., Oct. 14)

— Can do Part 1 after today's class
— Practice with lists (which will be on diagnostic)
e Can study for diagnostic and get part of assignment done!

— Can do Part 2 after this coming Monday's class

Housekeeping Il

F_ %

-

* Diagnostic assessment on Wed., Oct. 7
— Takes place during class time
— Covers through today's material (i.e., lists are fair game)
— Please download BlueBook software before the exam
— There is a practice diagnostic (and instructions) on class website

— If you have OAE accommodations or are in time zone (outside the
Americas) that requires rescheduling, and haven't heard from
Juliette, please email her

Global Variables: Bad Style

Constant - visible to all functions
NUM DAYS IN WEEK = 7

Global variable - visible to all functions
balance = 0

\ Different variables with the same name!
inq!
def main(): Super confusing!

balance = int(input("Initial balance: "))

while True:
amount = int(input("Deposit (@ to quit): "))
if amount ==

break * Also, really BAD style

deposit(amount) — So bad, that Python won't even let you do

it unless you basically add a command

that says "l want to have bad style"
def deposit(amount): ys W v Y

balance += amount — !'m not going to show you that command
in Python

— But, if you know it already, DON'T use it!
— We're in polite company

Using Parameters: Good Style

Don't want using your toaster
to impact your refrigerator!

def main():
balance = int(input("Initial balance: "))
while True:
amount = int(input("Deposit (@ to quit): "))
if amount ==
break
balance = deposit(balance, amount)

Encapsulation Principle:
Data used by a function
should be a parameter or
encapsulated in function

def deposit(balance, amount):
balance += amount
return balance

The Python Console

* Canrun Python interactively using the "console"
— In PyCharm click "Python Console" tab at bottom of window
— In Terminal, run Python (e.g., typing "py" or "python3" or
"python", depending on your platform) to get console
* Console has prompt: >>>
— Can type and execute Python statements (and see results)

— Example:
>>> x = 5
>>> x
5

— Easy way to try things out to answer questions you may have
— Use exit () to leave console

Let’s Take the Console
Out For a Spin..

And Then There Were None

 The term None is used in Python to describe "no value"

— For example, it is the value you would get from a function
that doesn't return anything

— WHAT?!

— Example:
>>> x = print("hi")
>>> print (x)
None

— Comparing anything to None (except None) is False

* Why does None exist?

— Denotes when the suitcase for a variable has "nothing" in it

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists
3. Understand how lists work as parameters

LLi1sts

What is a List?

* Alistis way to keep track of an ordered collection of
items

— Items in the list are called "elements"

— Ordered: can refer to elements by their position
— Collection: list can contain multiple items

* The list dynamically adjusts its size as elements are
added or removed

* Lists have a lot of built-in functionality to make using
them more straightforward

Show Me the Lists!

* Creating lists
— Lists start/end with brackets. Elements separated by commas.
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

e List with one element is not the same as the element

— Could try this out on the console:
>>> list one = [1]

>>> one 1

>>> list one == one

False

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed
— Indexes start from O

letters — 'a' 'b' 'c'! 'd’ 'e'!
0 1 2 3 4

 Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

Accessing Elements of List

e Consider the following list:

letters = ['a', 'b', '¢', 'd', 'e']

e Can think of it like a series of variables that are indexed
— Indexes start from O

letters — 'x' 'b' 'c'! 'd’ 'e'!
0 1 2 3 4

 Access individual elements:
letters[0] is 'a'
letters[4] is 'e'

* Can set individual elements like regular variable:
letters[0] = 'x'

Getting Length of a List

e Consider the following list:
letters = ['a', 'b', '¢', 'd', 'e']
e Can get length of list with 1en function:

len(letters) is 5
— Elements of list are indexed from 0 to length -1

e Example:

for 1 in range(len(letters)):
print (i, "->", letters[i])

0O -> a
1 ->Db
2 -> C
3 ->d
4 -> e

List Length: The Advanced Course

* Recall our old friends:
my list = [1, 2, 3]
reals = [4.7, -6.0, 0.22, 1.6]
strs = ['lots', 'of', 'strings', 'in', 'list']
mix = [4, 'hello', -3.2, True, 6]
empty list = []

* Pop quiz!
len(my list) =
len (reals)
len(strs)
len (mix)
len (empty list)

o o1 01 B~ W

The Strangeness of Indexing

e Can use negative index to work back from end of list
— What?!

letters = ['a', 'b', '¢', 'd', 'e']

* Bring me the strangeness!
letters[-1] is 'e'
letters[-2] is 'd’
letters[-5] is 'a'
— For indexes, think of —x assameas len(list)-x
letters[-1] is sameas letters[len(letters)-1]

e How about this?
letters|[6]

IndexError: list index out of range

Building Up Lists

* Can add elements to end of list with . append
alist = [10, 20, 30]

alist =—p| 10 20 30
[10, 20, 30]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)

alist =—p| 10 20 30 40
[10, 20, 30, 40]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list = empty list
[]
alist =—p| 10 20 30 40 50

[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list.append('a')

new list =——p | '3’

['a’]

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Building Up Lists

* Can add elements to end of list with . append

alist = [10, 20, 30]
alist.append (40)
alist.append(50)

new list = []

new list.append('a')
new list.append(4.3)

new list =—p | 'a' | 4.3

['a', 4.3]

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

alist =—p| 10 20 30 40 50
[10, 20, 30, 40, 50]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()

X ——— 50
50

alist =—p| 10 20 30 40
[10, 20, 30, 40]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()

X m—— 40
40

alist =—p| 10 20 30
[10, 20, 30]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m—p | 30
30

alist =——p| 10 20
[10, 20]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
x = alist.pop()
x = alist.pop()
x = alist.pop()

X m— | 20
20

alist =——p| 10
[10]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]
x = alist.pop()
= alist.pop()
= alist.pop()
= alist.pop()

-

= alist.pop()

X m—— 10
10

alist = empty list
[]

Removing Elements from Lists

* Can remove elements from end of list with .pop
— Removes the last element of the list and returns it

alist = [10, 20, 30, 40, 50]

x = alist.pop()

What is we did one more?

x = alist.pop()

IndexError: pop from empty list

= alist.pop()
= alist.pop()
= alist.pop()

-

alist.pop () Don't do it, Mehran!

X m— | 10 There might be
10 children watching!!

v)
alist =——p empty list + % -

[]

More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

* Printing lists (here, we show using the console):
>>> print(num list)
[1, 2, 3, 4]
>>> print(str list)
['Ruth', 'John', 'Sonia']

* Check to see if list is empty (empty list is like "False")
if num list:
print('num list is not empty')
else: B
print('num list is empty')

Even More Fun With Lists

 Can | get a couple new lists, please?
num list = [1, 2, 3, 4]
str 1list = ['Ruth', 'John', 'Sonia']

 Check to see if a list contains an element:
x =1
if x in num list:
do something

* General form of test (evaluates to a Boolean):
element in list

— Returns True if element is a value in list, False otherwise _
— Could use as test in awhile loop too

List Function Exiravaganza (part 1)!

* Function: list.pop (index) # pop can take parameter
— Removes (and returns) an element at specified index
>>> fun list = ['a', 'b', 'c', 'd']
>>> fun list.pop(2)
1ol
>>> fun list
['a', 'b', 'd']

* Function: list. remove (elem)

— Removes (and returns) first occurrence of element in list
>>> another 1list = ['a', 'b', 'b', 'c']
>>> another list.remove('b')

>>> another 1list

['a', 'b', 'c']

— ValueError if you try to remove an element that isn't in list

List Function Exiravaganza (part 2)!

* Function: list. extend (other list)

— Adds all element from other list to list that function is called on
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> listl.extend(list2)

>>> listl

[1, 2, 3, 4, 5]

« append is not the same as extend

— Append adds a single element, extends merges a list onto another
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]

>>> listl.append(list2)
>>> listl

[1, 2, 3, [4, 5]]

List Function Exiravaganza (part 3)!

e Using + operator on lists works like extend, but

creates a new list. Original lists are unchanged.
>>> listl = [1, 2, 3]

>>> list2 = [4, 5]

>>> list3 = listl + list2

>>> list3

[1, 2, 3, 4, 5]

* Can use += operator just like extend
>>> listl = [1, 2, 3]
>>> list2 = [4, 5]
>>> listl += list2
>>> listl
[1, 2, 3, 4, 5]

List Function Exiravaganza (part 4)!

* Function: list. index (elem)

— Returns index of first element in list that matches parameter elem
>>> alist = ['a', 'b', 'b', 'c']

>>> 1 = alist.index('b')

>>> 1

1

— ValueError if you ask for index of an element that isn't in list

* Function: list.insert (index, elem)
— Inserts elem at the given index. Shifts all other elements down.
>>> jJedi = ['luke', 'rey', 'obiwan']
>>> jedi.insert(l, 'mehran')
>>> jedi
['luke', 'mehran', 'rey', 'obiwan']

— Don't give up on your dreams...

List Function Exiravaganza (part 5)!

* Function: list. copy ()

— Returns a copy of the list

>>> actual jedi = ['luke', 'rey', 'obiwan']
>>> fantasy = actual jedi.copy()

>>> fantasy

['luke', 'rey', 'obiwan']

>>> fantasy.insert(l, 'mehran')

>>> fantasy

['luke', 'mehran', 'rey', 'obiwan']

>>> actual jedi

['luke', 'rey', 'obiwan']

List Function Exiravaganza (part 6)!

reals = [3.6, 2.9, 8.0, -3.2, 0.5]

* Function: max (1ist)

— Returns maximal value in the list
>>> max (reals)
8.0

* Function: min (1ist)

— Returns minimal value in the list
>>> min (reals)
-3.2

e Function: sum(list)

— Returns sum of the values in the list
>>> sum(reals)
11.8

Looping Through List Elements

str list = ['Ruth', 'John', 'Sonia']

* For loop using range:
for i in range(len(str list)):
elem = str list[i]
print (elem)

. Output:
* We can use a new kind of loop [rutn
called a "for-each" loop John
for elem in str 1list: Sonia

print (elem)

 These loops both iterate over all elements of the list
— Variable elem is set to each value in list (in order)

For-Each Loop Over Lists

str list = ['Ruth', 'John', 'Sonia']

for elem in st:_list:

Body of loop :l— This code gets

Do something with elem repeated once fc?r
each element in list

* Like variable i in for loop using range (),
elem is a variable that gets updated with each
loop iteration.

« elemgets assigned to each element in the list
in turn.

Looping Through List Elements

* General form of for-each loop:

for element in collection:
do something with element

* element can be any variable you want to use to refer to
items in the collection

— On each iteration through the loop, element will be set to be
the next item (in order) in the collection

— Recall, example:
for elem in str 1list:

print (elem)
— Lists are collections
— We'll see other kinds of collections later in course

When Passed as Parameters

Types that are "immutable”

Types that are "mutable”

int
float

bool
string

list

(we'll see more soon)

When you assign new value
to variable, you are assigning
luggage tag (name) to a new
value.

For parameters, the original
variable value you passed in
is not changed when
function is done.

* When you are changing the

variable in place, the luggage
tag does not change, but the
value inside the luggage does.
For parameters, it means
original variable value you
passed in is changed when
function is done.

Lists as Parameters |

 When you pass a list as a parameter you are passing a
reference to the actual list
— It's like getting a URL to the list (pass-by-reference)
— In function, changes to values in list persist after function ends

def add five(num list):
for i in range(len(num list)):

num list[i] += 5

def main|() :
values = [5, 6, 7, 8]
add five (values)

print (values)

Output| [10, 11, 12, 13]

Lists as Parameters |l

e But, watch out if you create a new list in a function

— Creating a new list means you're no longer dealing with list
passed in as parameter.

— It's like the URL you are using is pointing to a different page.
(You have assigned the luggage tag to a new value in function.)

— At that point you are no longer changing parameter passed in

def create new list(num list):
num list.append(9)
num list = [1, 2, 3]

def main|() :
values = [5, 6, 7, 8]
create new list(values)
print (values)

Output| [5, 6, 7, 8, 9]

Note on Loops and Lists

For loop using range:
for i in range(len(list)):
list[i] += 1 # Modifying list in place

For-each loop:

for elem in list: # Modifying local wvariable
elem += 1 # elem. If elem is immutable
type, not changing list!

Often use for loop with range when modifying
elements of list (when elements are immutable types)

Often use for-each loop when not modifying elements_
of list or when elements are mutable types ;

Putting 1t all together:
averagescores.py

Learning Goals

1. Learning about lists in Python
2. Writing code to use lists
3. Understand how lists work as parameters

