
Functions
CS106A, Stanford University

Review!

karel_is_awesome = True

my_bool = 1 < 2

Boolean variables

Boolean operations

p = True

q = False

opposite = not p # False

both_true = p and q # False

either_true = p or q # True

funky = (5 > 3) or not (1 < 2) and (6 == 6)

True

False

False

True

for i in range(10):

print(i)

Count starting From 0

0
1
2
3
4
5
6
7
8
9

Index starts counting from 0

Counts up to, but not including

the number in range

Review: guessnumber.py

Learn How To:

1. Write a function that takes in values
2. Write a function that returns a value

3. Trace function calls using stacks

Recall, calling functions

print("hello world")

num = int(input("Enter number:))

secret_number = random.randint(1, 100)

root = math.sqrt(num)

Defining a function

def turn_right():

turn_left()

turn_left()

turn_left()

Big difference with python functions:
Python functions can take in data, and can return data!

A toaster is a function?!

parameter return

A toaster is a function?!

parameter return

A toaster is a function?!

parameter

A toaster is a function?!

implementation

A toaster is a function?!

implementation

A toaster is a function?!

implementation

Abstraction

Civilization advances by
extending the number
of operations we can
perform without
thinking about them.

--Alfred North Whitehead

Abstraction is one of the most

critical concept in computing

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

function “definition”

function “call”

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

function
name

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

input given

input expected

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

arguments

parameters

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

function
body

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

Ends the function and gives back a value

This call “evaluates” to the value returned

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

Also a function call

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

No parameters (expects no input)

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

When a function ends it “returns”

def name(parameters):

statements

return value # optionally

• name: name of function (in snake_case)

• parameters: information passed into function

• return: information given back from the function

Formally

Parameters

Parameters let you
provide a function with

some information
when you call it.

Parameters allow a
function to be reused
with different input

information.

Coder:
function
author

Coder:
function

caller
Program

user

Uses the
terminal
(or user

interface)

Uses helper
functions

Writes helper
functions

other coders
can use

Coder:
function
author

Coder:
function

caller
Program

user

Uses the
terminal
(or user

interface)

Uses helper
functions

Writes helper
functions

other coders
can use

Pat Terry Morgan

def main():

mid = average(5.0, 10.2)

print(mid)

def average(a, b):

sum = a + b

return sum / 2

Anatomy of a function

Function author’s
contract - average:

If you call this function
you must provide two
parameters. The
function will give back a
return value.

Function caller

Function author

Learn by Example

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

> python intro.py

terminal

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

> python intro.py

terminal

caller

function author

user

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

> python intro.py

terminal

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

> python intro.py

terminal

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

> python intro.py

terminal

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py
Welcome to class

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

def print_intro():

print("Welcome to class")

print("It's the best part of my day.")

No Parameter, No Return

def main():

print_intro()

terminal

> python intro.py
Welcome to class
It’s the best part of my day

OMG! Let's do another one!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory terminalterminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory

num

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

print_opinion memory

num 5

terminal

> python opinion.py
I love 5!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

def print_opinion(num):

if (num == 5):

print(“I love 5!”)

else :

print(“Whattever”)

Parameter Example

def main():

print_opinion(5)

main memory

No variables

terminal

> python opinion.py
I love 5!

One more! Pleeeeze!

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
terminal

> python m2cm.py

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory meteresToCm memory terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory meteresToCm memory

meters 5.2

terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory meteresToCm memory

meters 5.2

520.0

terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory

520.0

terminal

> python m2cm.py
result

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python m2cm.py

520.0

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python m2cm.py
520.0

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

Parameter and Return Example
main memory

result 520.0

terminal

> python m2cm.py
520.0

More!

More!

More!

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py

520.0

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

520.0

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0

910.0

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0
910.0

910.0

def meters_to_cm(meters):

return 100 * meters

def main():

print(meters_to_cm(5.2))

print(meters_to_cm(9.1))

Parameter and Return Example
terminal

> python m2cm.py
520.0
910.0

Is returning

the same as printing?

How is this function

def meters_to_cm_case1(meters):

return 100 * meters

Different than this function?

def meters_to_cm_case2(meters):

print(100 * meters)

How is this function

def meters_to_cm_case1(meters):

return 100 * meters

Different than this function?

def meters_to_cm_case2(meters):

print(100 * meters)

When a function produces a
value does it print or return?

printreturn

Caller receives value.
Can store it and/or print it.

User sees value on the
terminal.

Is returning

the same as printing?

NO

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

terminal

> python maxmax.py

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 num2

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 5 num2

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 5 num2 1

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 5 num2 1

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 5 num2 1

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory max memory

num1 5 num2 1

5

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

5

max memory

num1 5 num2 1

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

5

terminal

> python maxmax.py

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

5

larger 5

terminal

> python maxmax.py

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

main memory

larger 5

terminal

> python maxmax.py

What if we change the

order of arguments?

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(5, 1)

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

Changed the order of arguments

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory max memory

num1 num2larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory max memory

num1 1 num2 5larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory max memory

num1 1 num2 5larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory max memory

num1 1 num2 5

5

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory

5

larger

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory

5

larger 5

def max(num1, num2):

if num1 >= num2:

return num1

return num2

Multiple Return Statements

def main():

larger = max(1, 5)

main memory

larger 5

Hey, can I return a bool?

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

is_odd memory

num 3

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

is_odd memory

num 3

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

is_odd memory

num 3

True

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd

True

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd True

def is_odd(num):

return (num % 2) == 1

Predicate functions

def main():

odd = is_odd(3)

main memory

odd True

You're ready!

are_we_related()

You're ready!

i_am_your_father()

You're ready!

nooooo()

join_me()

You're ready!

together_we_can_rule_the_galaxy()

You're ready!

as_function_and_robot()

You're ready!

im_just_here_for_the_beepers()

if time_available():

superguessnumber.py

