Functions
CS106A, Stanford University

Review!

Boolean variables

karel_i s awesome = True

my bool = 1 < 2

Boolean operations

p = True
q = False
opposite = not p # False

both true = p and q # False

either true = p or g # True

funky = (5 > 3) or not (1 < 2) and (6 == 6)
L__T__J
True'

Y
False

False

True

Count starting From 0

for i in range (10):
print (i)

Index starts counting from 0

Counts up to, but not including
the number In range

OoNOUVLIEdWDNEO

Review: guessnumber.py

Learn How To:

1. Write a function that takes in values
2. Write a function that returns a value
3. Trace function calls using stacks

Recall, calling functions

print ("hello world")

num = int(input("Enter number:))

secret number = random.randint(l, 100)

root = math.sqgrt (num)

Defining a function

def turn right():
turn left()
turn left()
turn left()

Big difference with python functions:
Python functions can take in data, and can return data!

A toaster is a function?!

c
ki s SAG I L e L g s

parameter —

A toaster is a function?!

return

A toaster is a function?!

9

U

parameter

A toaster is a function?!

Implementation

A toaster is a function?!

Implementation

A toaster is a function?!

o

|mpleméntat|on

Abstraction

Civilization advances by
extending the number
of operations we can
perform without
thinking about them.

--Alfred North Whitehead

Abstraction is one of the most

critical concept in computing

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

def main () : function “call”
mid =[average (5.0, 10.2)]
print (mid)

function “definition”

(def average (a, b):
sum = a + b

return sum / 2
_ y,

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

function
name

def[averageka, b) :
sum = a + b
return sum / 2

Anatomy of a function

def main() : input given
mid = averageBS.O, 10.2)]
print (mid)

input expected

def averagq(a, b)t
sum = a +

return sum / 2

Anatomy of a function

def main() : arguments
mid = averageBS.O, 10.2)]
print (mid)

parameters

def averagq(a, b)t
sum = a +

return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):

sum = a + b function
return sum / 2 body

Anatomy of a function

def main () : This call “evaluates” to the value returned
[mid =]average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
|zeturn sum / 2 | Ends the function and gives back a value

Anatomy of a function

Also a function call

‘def main () :
mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

No parameters (expects no input)

def mai

mid = average (5.0, 10.2)
print (mid)

def average(a, b):
sum = a + b
return sum / 2

Anatomy of a function

def main() :
mid = average (5.0, 10.2)
print (mid)

When a function ends it “returns”

def average(a, b):
sum = a + b
return sum / 2

Formally

def name (parameters)
Statements
return value # optionally

name: name of function (in snake case)
parameters: information passed into function

return: iInformation given back from the function

Parameters

Parameters let you
provide a function with
some information
when you call it.

Parameters allow a
function to be reused
with different input
information.

Coder: Coder:

Program function function
user caller author

Uses the Uses helper Writes helper
terminal functions functions
(or user other coders

interface) canuse {7\

RD
%’}
_',zl“’ 1S

o

< o A

Coder: Coder:

Program function function
user caller author

9 -
Pat Morgan
Uses the Uses helper Writes helper
terminal functions functions
(or user other coders
interface) canuse (7

Q= Ay

Anatomy of a function

Function caller

def main() . e 5
mid = average (5.0, 10.2) &

print (mid)

Function author Function author’s
contract - average:

def average(a, b):
sum = a + b
return sum / 2

If you call this function
you must provide two
parameters. The
function will give back a
return value.

Q
o}
=
o
X
LL1
>
0
-
S
O
0
]

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i P

print intro()

No Parameter, No Return

function author

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

user

terminal

. > thon intro.
def main () : i i

print intro()

caller

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i P

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

[def main () :
print intro()

] > python intro.py

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i P

[print_intro()]

No Parameter, No Return

[def print intro(): l
print("Welcome to class")

print ("It's the best part of my day.")

terminal

. > thon intro.
def main() : i P

print intro()

No Parameter, No Return

def print intro():

[print("Welcome to class") fJ
print("It"s the best part of my day.")

terminal

> python intro.py

def main() : Welcome to class

print intro()

No Parameter, No Return

def print intro():
print ("Welcome to class")
[irint("lt's the best part of my day.")]

terminal

- . > python intro.py
def main() : Welcome to class

print intro () It’s the best part of my day

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

> python intro.py

def main(): Welcome to class
print intro () It’s the best part of my day

terminal

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

- . > python intro.py
def main() : Welcome to class

[print intro ()] It’s the best part of my day

No Parameter, No Return

def print intro():
print ("Welcome to class")
print ("It's the best part of my day.")

terminal

- . > python intro.py
def main() : Welcome to class

print intro () It’s the best part of my day

OMG!! Let's do another one!

Parameter Example

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main() :
print opinion (5)

terminal

> python opinion.py

Parameter Example

main memory terminal
> python opinion.py
No variables
def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)
[def main() :]

print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main () :
[print;ppinion(S)]

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables

deftgrint_ppinion(num):]
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num

def print_ppinionknum{}
if (num == 5):
print ("I love 5!7)

else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print_ppinionknum{}
if (num == 5):
print ("I love 5!7)

else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5

def print opinion (num) :
[if (num == 5):
print (I love 5!”)

else
print (“Whattever”)

def main() :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if (num == 5):
[print(“I love 5!7)]
else
print (“Whattever”)

def main () :
print opinion (5)

Parameter Example

main memory print_opinion memory terminal

> python opinion.py
No variables num 5 | love 5!

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

U

def main () :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

U

def main() :
print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main|() :
[print;ppinion(S)]

Parameter Example

main memory terminal

> python opinion.py
No variables | love 5!

def print opinion (num) :
if (num == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main () :
D print opinion (5)

Parameter Example

main memory terminal

> python opinion.py
No variables " o | love 5!

def print opinion (num) :
if (n == 5):
print ("I love 5!7)
else
print (“Whattever”)

def main() :
print opinion (5)

One more! Pleececeze!

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result

def meters to cm(meters):
return 100 * meters

[def main () :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result

def meters to cm(meters):
return 100 * meters

def main() :
result =[meters_ﬁo_pm(5.2ﬂ
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
result

def[meters_to_pm(meters):]
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
result meters 5.2

def meters_to_pmkmetersﬂ:
return 100 * meters

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory meteresToCm memory terminal

> python m2cm.py
result meters 5.2

def meters to cm(meters) :
[return 100 * meters] 520.0

def main() :
result = meters to cm(5.2)
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result

def meters to cm(meters):
return 100 * meters

def main() : 520.0
result =[E§ters_ﬁo_pm(5.28
print (result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520.0

def meters to cm(meters):
return 100 * meters

def main|() : 520.0
[result = meters_ﬁo_pm(S.Zﬂ
print(result)

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520 .0 o Vo 520.0

def meters to cm(meters):
return 100 * meters

def main() :
result = meters to cm(5.2)
[print(result)]

Parameter and Return Example

main memory terminal

> python m2cm.py
result | 520 .0 o Vo 520.0

return 100 *

e parad'e™

result = meters to cm(5.2)
[print(result)]

More'!

More!

More'!

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

[def main():]
print (meters to cm(5.2))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() :
print{@eters_ﬁo_cm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py

def meters to cm(meters):
return 100 * meters

def main() : 520.0
print{@eters_ﬁo_cm(S.Z))
print (meters to cm(9.1))

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main|(): 520.0

[print(meters_ﬁo_cm(S.Z)”
print (meters to cm(J.

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_ﬁo_pm(Q.ln)

Parameter and Return Example

terminal

> python m2cm.py
520.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print{meters_ﬁo_pm(Q.ln)

910.0

Parameter and Return Example

terminal

> python m2cm.py
520.0
910.0

def meters to cm(meters):
return 100 * meters

def main () :
print (meters to cm(5.2))
(brint(meters_ﬁo_pm(Q.l))]

910.0

Parameter and Return Example

terminal

> python m2cm.py
520.0
910.0

def meters to cm(meters):
return 100 * meters

def main() :
print (meters to cm(5.2))
print (meters to cm(9.1))

Is returning
the same as printing?

How is this function
def meters to cm casel (meters):
return 100 * meters

Different than this function?
def meters to cm case2(meters):
print (100 * meters)

How is this function
def meters to cm casel (meters):
return 100 * meters A £

Different than this function?
def meters to cm case2(meters):
print (100 * meters)

When a function produces a
value does it print or return?

return / \ print

User sees value on the
terminal.

Caller receives value.
Can store it and/or print it.

Is returning
the same as printing?

NO

Multiple Return Statements

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

[def main () : 5J
Targer = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main () :

terminal

> python maxmax.py

[larger = max (5, 1)

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() :
larger = maka, 1ﬂ

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger

def maxknuml, numgﬂz
i1f numl >= numl:

return numl

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger numl

num?2

def maxknuml, numgﬂz
i1f numl >= numl:

return numl

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger num1 5

num?2

def maxknuml, numgﬂ:
i1f numl >= numl:

return numl

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger num1 5

num?2

def maxknuml, numgﬂ:
i1f numl >= numl:

return numl

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger num1l 5 num2 1

def max(numl, num?2) : terminal
if numl >= num?2:
> python maxmax.py

return numl

return num?2

def main() :
larger = max(5, 1)

Multiple Return Statements

main memory max memory

larger num1 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl]

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger num1 5

num?2

def max(numl, num2) :
if numl >= num2:
[return numl] 5

return num?2

def main() :
larger = max(5, 1)

terminal

> python maxmax.py

Multiple Return Statements

main memory max memory

larger num1 5

num?2

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main () : 5
larger = maka, 1)]

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() : 5
larger = maka, 1ﬂ

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main () : 5
[larger = max (5, 1)]

terminal

> python maxmax.py

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num2:
return numl

terminal

> python maxmax.py

return num?2

def main() :
D larger = max(5, 1)

What 1f we change the
order of arguments?

Multiple Return Statements

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() :
larger = max (5, 1)

Multiple Return Statements

def max(numl, num2):
if numl >= num2:
return numl

return num?2

Changed the order of arguments

def main () : ///

larger = max(1l, 5)

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

ldef main () : l
arger = max(l, 5)

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() :
larger = maxkl, Sﬂ

Multiple Return Statements

main memory max memory

larger numl num?2

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num?2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory max memory

larger num1 1 num?2 5

def maxknuml, num%ﬂ:
if numl >= num2:
return numl

return num?2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory max memory

larger num1 1 num?2 5

def max(numl, num?) :
[if numl >= num2:|
return num

return num?2

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory max memory

larger num1 1 num?2 5

def max(numl, num2):
if numl >= num2:
return numl

[return num2] 5

def main() :
larger = max(1l, 5)

Multiple Return Statements

main memory

larger

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main () : 5
larger = maxtl, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main () : 5
[larger = max (1, 5”

Multiple Return Statements

main memory

larger 5

def max(numl, num2):
if numl >= num2:
return numl

return num?2

def main() :
D larger = max(1l, 5)

Hey, can I return a bool?

Predicate functions

main memory

odd

def is odd(num) :
return (num % 2) ==

def main() :
odd = is odd(3)

Predicate functions

main memory

odd

def is odd(num) :
return (num % 2) ==

[def main () :
odd = is_odd(3)

Predicate functions

main memory

odd

def is odd(num) :
return (num % 2) ==

def main() :
odd =[is_odd(3)]

Predicate functions

main memory is_odd memory

odd num 3

def|is_odd (num) E_]
return (num % 2) ==

def main () :
odd = is odd(3)

Predicate functions

main memory is_odd memory

odd num 3

def is odd(num) :
return Rnum & 2) == 1]

def main () :
odd = is odd(3)

Predicate functions

main memory is_odd memory

odd num 3

def is odd(num) :
return [(num % 2) == 1] True

def main () :
odd = is odd(3)

Predicate functions

main memory

odd

def is odd(num) :
return (num % 2) ==

def main(): True
odd =[is_odd(3)]

Predicate functions

main memory

odd True

def is odd(num) :
return (num % 2) ==

def main() :
lodd = is_odd(3)]

Predicate functions

main memory

odd True

def is odd(num) :
return (num % 2) ==

def main() :
odd = is odd(3)

U

You're ready!

%we_related () J

You're ready!

er ()

[i_am;you:_fath

You're ready!

You're ready!

You're ready!

-~
'
3 \
=
N
4 -

[as_ function and robot()

You're ready!

[im just here for the beepers() J

1f time available () :
superguessnumber.py

